
Unicorn

version

Adam Hill

August 12, 2023

Contents
Introduction 1

Installation 1

Install Unicorn 1

Integrate Unicorn with Django 1

Components 2

Create a component 2

Component key 2

Component arguments 2

Example component 3

Component sub-folders 4

Unicorn attributes 4

Supported property types 4

Property type hints 4

Accessing nested fields 4

Django QuerySet 5

Custom class 5

Templates 6

Model modifiers 6

Lazy 6

Debounce 6

Defer 7

Chaining modifiers 7

Key 7

Smooth updates 7

DOM merging 7

Lifecycle events 8

updated 8

Ignore elements 8

Actions 9

Events 9

Passing arguments 9

Argument types 10

Coerced types 10

Django models 11

Custom types 11

Enums 11

Set shortcut 12

Modifiers 12

prevent 12

stop 12

discard 13

debounce 13

Special arguments 13

$event 13

$returnValue 13

Special methods 13

$refresh 13

$reset 14

$toggle 14

$validate 14

Calling methods 14

Return values 15

Child components 15

Parent component 15

Child component 16

Multiple children 16

Django Models 18

Model 18

QuerySet 19

Direct View 20

Template Requirements 20

Example 20

Validation 21

ValidationError 21

Django Form 21

Validate the entire component 22

Showing validation errors 23

Highlighting the invalid form 23

Showing a specific error message 23

Showing all the error messages 23

Redirecting 24

Redirect 24

HashUpdate 24

LocationUpdate 25

Loading States 25

Toggling Elements 25

Toggling Attributes 26

attr 27

class 27

class.remove 27

Dirty States 27

Toggling Attributes 27

attr 27

class 27

class.remove 28

Partial Updates 28

Target by id 28

Target by key 28

Polling 29

Disable poll 29

PollUpdate 30

Visibility 30

Modifiers 31

Debounce 31

Threshold 31

Messages 31

Redirecting 32

Advanced Views 33

Class properties 33

template_name 33

Instance properties 33

component_args 33

component_kwargs 33

request 33

Custom methods 34

Instance methods 34

mount() 34

hydrate() 34

updating(name, value) 35

updated(name, value) 35

updating_{property_name}(value) 35

updated_{property_name}(value) 35

calling(name, args) 35

called(name, args) 35

complete() 35

rendered(html) 35

parent_rendered(html) 35

Meta 35

exclude 35

javascript_exclude 36

safe 36

JavaScript Integration 37

Call JavaScript from View 37

Trigger Model Update 37

Queue Requests 38

CLI 38

Sub-folders 39

Settings 39

APPS 39

CACHE_ALIAS 39

MINIFY_HTML 39

MINIFIED 39

RELOAD_SCRIPT_ELEMENTS 40

SERIAL 40

ENABLED 40

TIMEOUT 40

SCRIPT_LOCATION 40

FAQ 40

Do I need to learn a new frontend framework for Unicorn? 40

Do I need to build an entire API to use Unicorn? 40

Do I need to install GraphQL to use Unicorn? 40

Do I need to run an annoying separate node.js process or learn any tedious Webpack
configuration incantations to use Unicorn?

40

Does this replace Vue.js or React? 40

Isn’t calling an AJAX endpoint on every input slow? 41

But, what about security? 41

What browsers does Unicorn support? 41

How to make sure that the new JavaScript is served when a new version of Unicorn is
released?

41

What is the difference between Unicorn and lighter front-end frameworks like htmx or
alpine.js?

41

Changelog 41

0.54.0 41

0.53.0 41

v0.52.0 42

v0.51.0 42

v0.50.0 42

v0.49.2 42

v0.49.1 42

v0.49.0 42

v0.48.0 42

v0.47.0 42

v0.46.0 43

v0.45.1 43

v0.45.0 43

v0.44.1 43

v0.44.0 43

v0.43.1 43

v0.43.0 43

v0.42.1 43

v0.42.0 44

v0.41.2 44

v0.41.1 44

v0.41.0 44

v0.40.0 44

v0.39.1 44

v0.39.0 44

v0.38.1 45

v0.38.0 45

v0.37.2 45

v0.37.1 45

v0.37.0 45

v0.36.1 45

v0.36.0 45

v0.35.3 45

v0.35.2 45

v0.35.0 46

v0.34.0 46

v0.33.0 46

v0.32.0 46

v0.31.0 46

v0.30.0 46

v0.29.0 46

v0.28.0 47

v0.27.2 47

v0.27.1 47

v0.27.0 47

v0.26.0 47

v0.25.0 47

v0.24.0 47

v0.23.0 47

v0.22.0 48

v0.21.2 48

v0.21.0 48

v0.20.0 48

v0.19.0 48

v0.18.1 48

v0.18.0 48

v0.17.2 49

v0.17.1 49

v0.17.0 49

v0.16.1 49

v0.16.0 49

v0.15.1 49

v0.15.0 50

v0.14.1 50

v0.14.0 50

v0.13.0 50

v0.12.0 50

v0.11.2 50

v0.11.0 50

v0.10.1 51

v0.10.0 51

v0.9.4 51

v0.9.3 51

v0.9.1 51

v0.9.0 51

v0.8.0 52

v0.7.1 52

v0.7.0 52

v0.6.5 52

v0.6.4 52

v0.6.3 52

v0.6.2 52

v0.6.1 53

v0.6.0 53

v0.5.0 53

v0.4.0 53

v0.3.0 53

v0.2.3 53

v0.2.2 53

v0.2.1 54

v0.2.0 54

v0.1.1 54

v0.1.0 54

Troubleshooting 54

Disallowed MIME type error on Windows 54

Architecture 54

Template tags 55

JavaScript initialization 55

Models 55

Actions 55

HTML Diff 55

Contributor Covenant Code of Conduct 55

Our Pledge 55

Our Standards 56

Enforcement Responsibilities 56

Scope 56

Enforcement 56

Enforcement Guidelines 56

1. Correction 56

2. Warning 56

3. Temporary Ban 57

4. Permanent Ban 57

Attribution 57

Related projects 57

Inspirational projects in other languages 58

Full-stack framework Python packages 58

Django component packages 58

Django packages to integrate lightweight frontend frameworks 58

Introduction

Installation

Install Unicorn
Install Unicorn the same as any other Python package (preferably into a virtual environment).

pip install django-unicorn

OR

poetry add django-unicorn

Note

If attempting to install django-unicorn and orjson is preventing the installation from succeeding, check
whether it is using 32-bit Python. Unfortunately, orjson is only supported on 64-bit Python. More details in issue
#105.

Integrate Unicorn with Django
1. Add django_unicorn to the INSTALLED_APPS list in the Django settings file (normally settings.py).

settings.py
INSTALLED_APPS = (
 # other apps
 "django_unicorn", # required for Django to register urls and templatetags
 # other apps
)

2. Add path("unicorn/", include("django_unicorn.urls")),into the project’surls.py.

urls.py
urlpatterns = (
 # other urls
 path("unicorn/", include("django_unicorn.urls")),
)

3. Add {% load unicorn %} to the top of the Django HTML template.

4. Add {% unicorn_scripts %} into the Django HTML template and make sure there is a {% csrf_token %}
in the template as well.

<!-- index.html -->
{% load unicorn %}
<html>
 <head>
 {% unicorn_scripts %}
 </head>
 <body>
 {% csrf_token %}
 </body>
</html>

Then, create a component.

Introduction

1

https://docs.python.org/3/tutorial/venv.html
https://github.com/adamghill/django-unicorn/issues/105
https://github.com/adamghill/django-unicorn/issues/105

Components
Unicorn uses the term “component” to refer to a set of interactive functionality that can be put into templates. A
component consists of a Django HTML template with specific tags and a Python view class which provides the
backend code for the template.

Create a component
The easiest way to create your first component is to run the startunicorn Django management command after
Unicorn is installed.

The first argument to startunicorn is the Django app to add your component to. Every argument after is a new
component to create a template and view for.

Create `hello-world` and `hello-magic` components in a `unicorn` app
python manage.py startunicorn unicorn hello-world hello-magic

Warning

If the app does not already exist, startunicorn will ask if it should call startapp to create a new application.
However, make sure to add the app name to INSTALLED_APPS in your Django settings file (normally
settings.py). Otherwise Django will not be able to find the newly created component templates.

Note

Explicitly set which apps Unicorn looks in for components with the APPS setting. Otherwise, all
INSTALLED_APPS will be searched for components.

Then, add a {% unicorn 'hello-world' %} templatetag into the template where you want to load the new
component.

Warning

Make sure that there is a {% csrf_token %} rendered by the HTML template that includes the component to
prevent cross-site scripting attacks while using Unicorn.

Component key
If there are multiple of the same components on the page, a key kwarg can be passed into the template. For
example, {% unicorn 'hello-world' key='helloWorldKey' %}. This is useful when a unique reference to
a component is required, but it is optional.

Component arguments
args and kwargs can be passed into the unicorn templatetag from the template. They will be available in the
component component_args and component_kwargs methods respectively.

<!-- index.html -->
{% unicorn 'hello-world' "Hello" name="World" %}

hello_world.py
from django_unicorn.components import UnicornView

class HelloWorldView(UnicornView):

Components

2

 def mount(self):
 arg = self.component_args[0]
 kwarg = self.component_kwargs["name"]

 assert f"{arg} {kwarg}" == "Hello World"

Regular Django template variables can also be passed in as an argument as long as it is available in the template
context.

<!-- index.html -->
{% unicorn 'hello-world' name=hello.world.name %}

views.py
from django.shortcuts import render

def index(request):
 context = {"hello": {"world": {"name": "Galaxy"}}}
 return render(request, "index.html", context)

class HelloWorldView(UnicornView):
 def mount(self):
 kwarg = self.component_kwargs["name"]

 assert kwarg == "Galaxy"

Example component
A basic example component could consist of the following template and class.

hello_world.py
from django_unicorn.components import UnicornView

class HelloWorldView(UnicornView):
 name = "World"

<!-- hello-world.html -->
<div>
 <input unicorn:model="name" type="text" id="text" />

 Hello {{ name|title }}
</div>

Warning

Unicorn requires there to be one root element surrounding the component template.

unicorn:model is the magic that ties the input to the backend component. The Django template variable can use
any property or method on the component as if they were context variables passed in from a view. The attribute
passed into unicorn:model refers to the property in the component class and binds them together.

Note

By default unicorn:model updates are triggered by listening to input events on the element. To listen for the
blur event instead, use the lazy modifier.

Components

3

When a user types into the text input, the information is passed to the backend and populates the component class,
which is then used to generate the output of the template HTML. The template can use any normal Django
templatetags or filters (e.g. the title filter above).

Component sub-folders
Components can also be nested in sub-folders.

unicorn/
 components/
 __init__.py
 hello/
 __init__.py
 world.py
 templates/
 unicorn/
 hello/
 world.html

An example of how the above component would be included in a template.

<!-- index.html -->
{% unicorn 'hello.world' %}

Unicorn attributes
Attributes used in component templates usually start with unicorn:, however the shortcut u: is also supported. So,
for example, unicorn:model could also be written as u:model.

Supported property types
Properties of the component can be of many different types, including str, int, list, dictionary,
Decimal,Django Model, Django QuerySet, dataclass, or custom classes.

Property type hints

Unicorn will attempt to cast any properties with a type hint when the component is hydrated.

rating.py
from django_unicorn.components import UnicornView

class RatingView(UnicornView):
 rating: float = 0

 def calculate_percentage(self):
 print(self.rating / 100.0)

Without rating: float, when calculate_percentage is called Python will complain with an error message
like the following.

TypeError: unsupported operand type(s) for /: 'str' and 'int'`

Accessing nested fields

Fields in a dictionary or Django model can be accessed similarly to the Django template language with
“dot-notation”.

hello_world.py
from django_unicorn.components import UnicornView
from book.models import Book

class HelloWorldView(UnicornView):

Components

4

https://docs.python.org/3.7/library/dataclasses.html

 book = Book.objects.get(title='American Gods')
 book_ratings = {'excellent': {'title': 'American Gods'}}

<!-- hello-world.html -->
<div>
 <input unicorn:model="book.title" type="text" id="model" />
 <input
 unicorn:model="book_ratings.excellent.title"
 type="text"
 id="dictionary"
 />
</div>

Note

Django models has many more details about using Django models in Unicorn.

Django QuerySet

Django QuerySet can be referenced similarly to the Django template language in a unicorn:model.

hello_world.py
from django_unicorn.components import UnicornView
from book.models import Book

class HelloWorldView(UnicornView):
 books = Book.objects.all()

<!-- hello-world.html -->
<div>
 <input unicorn:model="books.0.title" type="text" id="text" />
</div>

Note

Django models has many more details about using Django QuerySets in Unicorn.

Custom class

Custom classes need to define how they are serialized. If you have access to the object to serialize, you can define a
to_json method on the object to return a dictionary that can be used to serialize. Inheriting from
unicorn.components.UnicornField is a quick way to serialize a custom class, but note that it just calls
self.__dict__ under the hood, so it is not doing anything particularly smart.

Another option is to set the form_class on the component and utilize Django’s built-in forms and widgets to handle
how the class should be deserialized. More details are provided in validation.

hello_world.py
from django_unicorn.components import UnicornView, UnicornField

class Author(UnicornField):
 def mount(self):
 self.name = 'Neil Gaiman'

 # Not needed because inherited from `UnicornField`

Components

5

 # def to_json(self):
 # return {'name': self.name}

 class HelloWorldView(UnicornView):
 author = Author()

<!-- hello-world.html -->
<div>
 <input unicorn:model="author.name" type="text" id="author_name" />
</div>

!DANGER!

Never put sensitive data into a public property because that information will publicly available in the HTML source
code, unless explicitly prevented with javascript_exclude.

Templates
Templates are just normal Django HTML templates, so anything you could normally do in a Django template will still
work, including template tags, filters, loops, if statements, etc.

Warning

Unicorn requires there to be one root element surrounding the component template.

Note

To reduce the verbosity of templates, u: can be used as a shorthand for any attribute that starts with unicorn:.
All of the examples in the documentation use unicorn: to be explicit, but both are supported.

Model modifiers

Lazy

To prevent updates from happening on every input, you can append a lazy modifier to the end of unicorn:model.
That will only update the component when a blur event happens.

<!-- waits-for-blur.html -->
<div>
 <input unicorn:model.lazy="name" type="text" id="name" />
 Hello {{ name|title }}
</div>

Debounce

The debounce modifier configures how long to wait to fire an event. The time is always specified in milliseconds, for
example: unicorn:model.debounce-1000 would wait for 1000 milliseconds (1 second) before firing the
message.

<!-- waits-1-second.html -->
<div>
 <input unicorn:model.debounce-1000="name" type="text" id="name" />

Templates

6

 Hello {{ name|title }}
</div>

Defer

The defer modifier will store and save model changes until the next action gets triggered. This is useful to prevent
additional network requests until an action is triggered.

<!-- defer.html -->
<div>
 <input unicorn:model.defer="task" type="text" id="task" />
 <button unicorn:click="add">Add task</button>

 {% for task in tasks %}
 {{ task }}
 {% endfor %}

</div>

Chaining modifiers

Lazy and debounce modifiers can even be chained together.

<!-- waits-for-blur-and-then-5-seconds.html -->
<div>
 <input unicorn:model.lazy.debounce-5000="name" type="text" id="text" />
 Hello {{ name|title }}
</div>

Key

Smooth updates

Setting a unique id on elements with unicorn:model will prevent changes to an input from being choppy when
there are lots of updates in quick succession.

<!-- choppy-updates.html -->
<input type="text" unicorn:model="name"></input>

!-- smooth-updates.html -->
<input type="text" id="someFancyId" unicorn:model="name"></input>

However, setting the same id on two elements with the same unicorn:model won’t work. The unicorn:key
attribute can be used to make sure that the elements can be synced as expected.

<!-- missing-updates.html -->
<input type="text" id="someFancyId" unicorn:model="name"></input>
<input type="text" id="someFancyId" unicorn:model="name"></input>

<!-- this-should-work.html -->
<input type="text" id="someFancyId" unicorn:model="name"></input>
<input type="text" id="someFancyId" unicorn:model="name" unicorn:key="someFancyKey"></input>

DOM merging

The JavaScript library used to merge changes in the DOM, morphdom, uses an element’s id to intelligently update
DOM elements. If it isn’t possible to have an id attribute on the element, unicorn:key will be used if it is available.

Templates

7

Lifecycle events
Unicorn provides events that fire when different parts of the lifecycle occur.

updated

The updated event is fired after the AJAX call finishes and the component is merged with the newly rendered
component template. The callback gets called with one argument, component, which can be inspected if necessary.

<!-- updated-event.html -->

<script type="application/javascript">
 window.addEventListener("DOMContentLoaded", (event) => {
 Unicorn.addEventListener("updated", (component) =>
 console.log("got updated", component)
);
 });
</script>

Ignore elements
Some JavaScript libraries will change the DOM (such as Select2) after the page renders. That can cause issues for
Unicorn when trying to merge that DOM with what Unicorn thinks the DOM should be. unicorn:ignore can be
used to prevent Unicorn from morphing that element or its children.

Note

When the component is initially rendered, normal Django template functionality can be used.

<!-- ignored-element.html -->
<div>
 <script src="jquery.min.js"></script>
 <link href="select2.min.css" rel="stylesheet" />
 <script src="select2.min.js"></script>

 <div unicorn:ignore>
 <select
 id="select2-example"
 onchange="Unicorn.call('ignored-element', 'select_state', this.value, this.selectedIndex);"
 >
 {% for state in states %}
 <option value="{{ state }}">{{ state }}</option>
 {% endfor %}
 </select>
 </div>

 <script>
 $(document).ready(function () {
 $("#select2-example").select2();
 });
 </script>
</div>

ignored_element.py
from django_unicorn.components import UnicornView

class JsView(UnicornView):
 states = (
 "Alabama",

Templates

8

 "Alaska",
 "Wisconsin",
 "Wyoming",
)
 selected_state = ""

 def select_state(self, state_name, selected_idx):
 print("select_state state_name", state_name)
 print("select_state selected_idx", selected_idx)
 self.selected_state = state_name

Actions
Components can also trigger methods from the templates by listening to any valid event type. The most common
events would be click, input, keydown, keyup, and mouseenter, but MDN has a list of all of the browser event
types available.

Events
An example action to call the clear_name method on the component.

<!-- clear-name.html -->
<div>
 <input unicorn:model="name" type="text" id="text" />
 Hello {{ name|title }}
 <button unicorn:click="clear_name">Clear Name</button>
</div>

clear_name.py
from django_unicorn.components import UnicornView

class ClearNameView(UnicornView):
 name = "World"

 def clear_name(self):
 self.name = ""

When the button is clicked, the name property will get set to an empty string. Then, the component will intelligently
re-render itself and the text input will update to match the property on the component.

Tip

Instance methods without arguments can be called from the template with or without parenthesis.

Passing arguments
Actions can also pass basic Python types to the backend component.

<!-- passing-args.html -->
<div>
 <input unicorn:model="name" type="text" id="text" />
 Hello {{ name|title }} ■
 <button unicorn:click="set('Bob')">Set as Bob</button>
 <button unicorn:click="set()">Set default value of name argument</button>
</div>

passing_args.py
from django_unicorn.components import UnicornView

Actions

9

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events

class PassingArgsView(UnicornView):
 name = "World"

 def set(self, name="Universe"):
 self.name = name

Argument types

Most basic Python types, including string, int, float, bool, list, tuple, dictionary, and set, are
supported by default.

<!-- argument-types.html -->
<div>
 <button unicorn:click="update(99)">Pass int</button>
 <button unicorn:click="update(1.234)">Pass float</button>
 <button unicorn:click="update(True)">Pass bool</button>
 <button unicorn:click="update({'key': 'value'})">Pass dictionary</button>
 <button unicorn:click="update([1, 2, 3])">Pass list</button>
 <button unicorn:click="update((1, 2, 3))">Pass tuple</button>
 <button unicorn:click="update({1, 2, 3})">Pass set</button>
</div>

Coerced types

Arguments with the types of datetime, date, time, timedelta, and UUID can be coerced by using a type
annotation in the action method.

Note

Django’s dateparse methods are used to convert strings to the date-related type.

Note

Both integer and float epochs can also be coerced into datetime or date objects.

argument_type_hints.py
from django_unicorn.components import UnicornView
from datetime import date, datetime
from uuid import UUID

class ArgumentTypeHintsView(UnicornView):
 def is_datetime(self, obj: datetime):
 assert type(obj) is datetime

 def is_uuid(self, obj: UUID):
 assert type(obj) is UUID

 def is_date(self, _date: date = None):
 assert type(obj) is _date

<!-- argument-type-hints.html -->
<div>
 <button unicorn:click="is_datetime('2020-09-12T01:01:01')">Check datetime with string</button>
 <button unicorn:click="is_datetime(1691499534)">Check datetime with epoch</button>
 <button unicorn:click="is_uuid('90144cb9-fc47-476d-b124-d543b0cff091')">Check UUID</button>

Actions

10

https://docs.djangoproject.com/en/stable/ref/utils/#module-django.utils.dateparse

 <button unicorn:click="is_date(date='2020-09-12')">Check date</button>
</div>

Django models

Django models can be instantiated as an argument or with a pk kwarg and a type annotation.

argument_model.py
from django_unicorn.components import UnicornView
from django.contrib.auth.models import User

class ArgumentModelView(UnicornView):
 def is_user_via_arg(self, obj: User):
 assert type(obj) is User

 def is_user_via_kwarg(self, pk: User=None):
 assert type(obj) is User

<!-- argument-model.html -->
<div>
 <button unicorn:click="is_user_via_arg(1)">Gets user with pk of 1</button>
 <button unicorn:click="is_user_via_kwarg(pk=2)">Gets user with pk of 2</button>
</div>

Custom types

Custom objects can also be used as a type annotation and Unicorn will attempt to instantiate the object with the
value that is passed in as the argument.

argument_custom_type.py
from django_unicorn.components import UnicornView

class CustomType:
 def __init__(self, custom_type_id: int):
 self.custom_type_id = custom_type_id

class ArgumentCustomTypeView(UnicornView):
 def is_custom_type(self, obj: CustomType):
 assert type(obj) is CustomType

<!-- argument-custom-type.html -->
<div>
 <button unicorn:click="is_custom_type(1)">Gets custom type</button>
</div>

Enums

Enums themselves cannot be passed as an argument, but the enum value can be since that is a Python primitive.
Use the enum as a type annotation to coerce the value into the specified enum.

enum.py
from django_unicorn.components import UnicornView
from enum import Enum

class Color(Enum):
 RED = 1
 GREEN = 2
 BLUE = 3
 PURPLE = 4

class EnumView(UnicornView):

Actions

11

 color = Color.RED
 purple_color = Color.PURPLE

 def set_color(self, color: Color):
 self.color = color

<!-- enum.html -->
<div>
 <button unicorn:click="set_color({{ color.BLUE.value }})">Show BLUE (and 3) below when clicked</button>
 <button unicorn:click="set_color(2)">Show GREEN (and 2) below when clicked</button>
 <button unicorn:click="set_color({{ purple_color.value }})">Show PURPLE (and 4) below when clicked</button>

 <!-- This will be RED when first rendered, and then will change based on the button clicked above -->
 Color: {{ color }}

 <!-- This will be 1 when first rendered, and then will change based on the button clicked above -->
 Color int: {{ color.value }}
</div>

Set shortcut
Actions can also set properties without requiring an explicit method.

<!-- set-shortcut.html -->
<div>
 <input unicorn:model="name" type="text" id="text" />
 Hello {{ name|title }} ■
 <button unicorn:click="name='Bob'">Set name as Bob</button>
</div>

set_shortcut.py
from django_unicorn.components import UnicornView

class SetShortcutView(UnicornView):
 name = "World"

Modifiers
Similar to models, actions also have modifiers which change how the method gets called.

prevent

Prevents the default action the browser would use for that element. The same as calling preventDefault.

<!-- prevent-modifier.html -->
<div>
 <button unicorn:click.prevent="name='Bob'">Set name as Bob</button>
</div>

stop

Stops the event from bubbling up the event chain. The same as calling stopPropagation.

<!-- stop-modifier.html -->
<div>
 <button unicorn:click.stop="name='Bob'">Set name as Bob</button>
</div>

Actions

12

discard

Discards any model updates from being saved before calling the specified method on the view. Useful for a cancel
button.

<!-- discard-modifier.html -->
<div>
 <input type="text" unicorn:model="name">
 <button unicorn:click.discard="cancel">Cancel</button>
</div>

discard_modifier.py
from django_unicorn.components import UnicornView

class DiscardModifierView(UnicornView):
 name = None

 def cancel(self):
 pass

debounce

Waits the specified time in milliseconds before calling the specified method.

<!-- debounce-modifier.html -->
<div>
 <input type="text" unicorn:model="name">
 <button unicorn:click.debounce-1000="add_count">Add Count</button>
</div>

Special arguments

$event

A reference to the event that triggered the action.

<!-- event.html -->
<div>
 <input type="text" unicorn:change="update($event.target.value.trim())">Update</input>
</div>

$returnValue

A reference to the last return value from an action method.

<!-- returnValue.html -->
<div>
 <input type="text" unicorn:change="update($returnValue.trim())">Update</input>
</div>

Special methods

$refresh

Refresh and re-render the component from its current state.

<!-- refresh-method.html -->
<div>
 <button unicorn:click="$refresh">Refresh the component</button>
</div>

Actions

13

$reset

Revert the component to its original state.

<!-- reset-method.html -->
<div>
 <button unicorn:click="$reset">Reset the component</button>
</div>

$toggle

Toggle a field on the component. Can only be used for fields that are booleans.

<!-- toggle-method.html -->
<div>
 <button unicorn:click="$toggle('check')">Toggle the check field</button>
</div>

Tip

Multiple fields can be toggled at the same time by passing in multiple fields at a time:
unicorn:click="$toggle('check', 'another_check', 'a_third_check')". Nested properties are
also supported: unicorn:click="$toggle('nested.check')".

$validate

Validates the component.

<!-- validate-method.html -->
<div>
 <button unicorn:click="$validate">Validate the component</button>
</div>

Calling methods
Sometimes you need to trigger a method on a component from regular JavaScript. That is possible with
Unicorn.call(). The first argument is the name (or key) of the component and the second argument is the name
of the method to call.

<!-- call-with-component-name.html -->
{% unicorn 'hello-world' %}

<button onclick="Unicorn.call('hello-world', 'set_name');">
 Set the name from outside the component
</button>

<!-- call-with-component-key.html -->
{% unicorn 'hello-world' key='hello-universe' %}

<button onclick="Unicorn.call('hello-universe', 'set_name');">
 Set the name from outside the component
</button>

Passing arguments to the method call is also supported.

<!-- index.html -->
{% unicorn 'hello-world' %}

<button onclick="Unicorn.call('hello-world', 'set_name', 'World');">

Actions

14

 Set the name to "World" from outside the component
</button>

Return values
To retrieve the last action method’s return value, use Unicorn.getReturnValue().

<!-- index.html -->
{% unicorn 'hello-world' %}

<button onclick="alert(Unicorn.getReturnValue('hello-world'));">
 Get the last return value
</button>

Child components
Unicorn supports nesting components so that one component is a child of another. Since HTML is a tree structure,
a component can have multiple children, but each child only has one parent.

We will slowly build a nested component example with three components: table, filter and row. The table is the
parent and contains the other two components. The filter will update the parent table component, and the row will
contain functionality to edit a row.

Parent component
So that Unicorn knows about the parent-child relationship, the child component must pass in a parent keyword
argument with the parent’s component view.

<!-- table.html -->
{% load unicorn %}
<div>
 {% unicorn 'filter' parent=view %}

 <table>
 <thead>
 <tr>
 <td>Author</td>
 <td>Title</td>
 </tr>
 </thead>
 {% for book in books %}
 <tr>
 <td>{{ book.author }}</td>
 <td>{{ book.title }}</td>
 </tr>
 {% endfor %}
 </table>
</div>

table.py
from book.models import Book
from django_unicorn.components import UnicornView

class TableView(UnicornView):
 books = Book.objects.none()

 def mount(self):
 self.load_table()

Child components

15

 def load_table(self):
 self.books = Book.objects.all()[0:10]

Note

view will always be the current component’s view, so passing view into parent (i.e. parent=view) will always
create the relationship correctly.

Child component
The child filter component, {% unicorn 'filter' parent=view %}, will have access to its parent through the
view’s self.parent. The FilterView is using the updated method to filter the books queryset on the table
component when the filter’s search model is changed.

<!-- filter.html -->
<div>
 <input type="text" unicorn:model="search" />
</div>

from django_unicorn.components import UnicornView

class FilterView(UnicornView):
 search = ""

 def updated_search(self, query):
 self.parent.load_table()

 if query:
 self.parent.books = list(
 filter(lambda f: query.lower() in f.title.lower(), self.parent.books)
)

Multiple children
If we want to encapsulate the editing and saving of a row of data, we can add in a row component as well.

Note

The discard action modifier is used on the cancel button to provide an easy way to prevent any edits from being
saved.

<!-- row.html -->
<tr>
 <td>
 {% if is_editing %}
 <input type="text" unicorn:model.defer="book.author" />
 {% else %}
 {{ book.author }}
 {% endif %}
 </td>
 <td>
 {% if is_editing %}
 <input type="text" unicorn:model.defer="book.title" />
 {% else %}
 {{ book.title }}

Child components

16

https://www.django-unicorn.com/docs/advanced/#updated-property-name-value

 {% endif %}
 </td>
 <td>
 {% if is_editing %}
 <button unicorn:click="save">Save</button>
 <button unicorn:click.discard="cancel">Cancel</button>
 {% else %}
 <button unicorn:click="edit">Edit</button>
 {% endif %}
 </td>
</tr>

row.py
from django_unicorn.components import UnicornView

class RowView(UnicornView):
 book = None
 is_editing = False

 def edit(self):
 self.is_editing = True

 def cancel(self):
 self.is_editing = False

 def save(self):
 self.book.save()
 self.is_editing = False

The changes for the table component where the row child component is added in. Views will always have a
children attribute – here it is used to set is_editing to false on all rows when the table gets reloaded.

<!-- table.html --->
{% load unicorn %}
<div>
 {% unicorn 'filter' parent=view %}

 <table>
 <thead>
 <tr>
 <td>Author</td>
 <td>Title</td>
 </tr>
 </thead>
 {% for book in books %} {% unicorn 'row' parent=view book=book key=book.id
 %} {% endfor %}
 </table>
</div>

table.py
from book.models import Book
from django_unicorn.components import UnicornView

class TableView(UnicornView):
 books = Book.objects.none()

 def mount(self):
 self.load_table()

 def load_table(self):

Child components

17

 self.books = Book.objects.all()

 for child in self.children:
 if hasattr(child, "is_editing"):
 child.is_editing = False

Warning

Unicorn requires components to have a unique identifier. Normally that is handled automatically, however
multiple child components with the same component name require some help.

For child components, unicorn:id is automatically created from the parent’s unicorn:id and the child’s
component name. If a child component is created multiple times in the same parent, one of the following can be
used to create unique identifiers:

• pass in a key keyword argument to the child component

{% unicorn 'row' parent=view book=book key=book.id %}

• pass in an id keyword argument to the child component

{% unicorn 'row' parent=view book=book id=book.id %}

• the view has an attribute named model which has either a pk or id attribute

{% unicorn 'row' parent=view model=book %}

Django Models
Unicorn provides tight integration with Django Models and QuerySets to handle typical workflows.

Model
A Django Model can be used as a field on a component just like basic Python primitive types. Use unicorn:model
to bind to a field of a Django Model like you would in a normal Django template.

Warning

Using this functionality will serialize your entire model by default and expose all of the values in the HTML source
code. Do not use this particular functionality if there are properties that need to be kept private.

One option is to customize the serialization of the model into a dictionary to only expose the data that should be
publicly available.

Another option is to use Meta.exclude or Meta.javascript_exclude so those fields are not exposed.

<!-- model.html -->
<div>
 <input unicorn:model.defer="book.title" type="text" id="book" />
 {{ book.title }}
 <button unicorn:click="save({{ book.pk }})">Save</button>
</div>

model.py
from django_unicorn.components import UnicornView
from books.models import Book

Django Models

18

class ModelView(UnicornView):
 book: Book = None

 def mount(self):
 self.book = Book.objects.all().first()

 def save(self, book_to_save: Book):
 book_to_save.save()

Note

The model’s pk will be used to look up the correct model if there is only one argument for an action method and it
has a type annotation for a Django Model. To lookup by a different model field, pass a dictionary into the
front-end.

<button unicorn:click="delete({ 'uuid': '{{ book.uuid }}'})">Delete by uuid</button>

def delete(self, book_to_delete: Book):
 book_to_delete.delete()

QuerySet
A Django QuerySet can be set to a property on a component just like a regular list.

<!-- queryset.html -->
<div>
 {% for book in books %}
 <div>
 <div>
 <input unicorn:model.defer="books.{{ forloop.counter0 }}.title" type="text" id="title" />
 {{ book.title }}
 </div>
 <div>
 <input unicorn:model.defer="books.{{ forloop.counter0 }}.description" type="text" id="description" />
 {{ book.description }}
 </div>
 <div>
 <button unicorn:click="save({{ forloop.counter0 }})">Save</button>
 </div>
 </div>
 {% endfor %}
</div>

queryset.py
from django_unicorn.components import UnicornView
from books.models import Book

class QuerysetView(UnicornView):
 books = Book.objects.none()

 def mount(self):
 self.books = Book.objects.all().order_by("-id")[:5]

 def save(self, book_idx: int):
 self.books[book_idx].save()

Django Models

19

Warning

This will expose all of the model values for the QuerySet in the HTML source. One way to avoid leaking all
model information is to pass the fields that are publicly viewable into values() on your QuerySet.

def mount(self):
 self.books = Book.objects.all().order_by("-id").values("pk", "title")[:5]

A QuerySetType type hint can also be used for QuerySet to ensure the correct type is used for the component
field.

queryset.py
from django_unicorn.components import QuerySetType, UnicornView
from books.models import Book

class QuerysetView(UnicornView):
 books: QuerySetType[Book] = None

 def mount(self):
 self.books = Book.objects.all().order_by("-id")[:5]

 def save(self, book_idx: int):
 self.books[book_idx].save()

Direct View
Usually components will be included in a regular Django template, however a component can also be specified in a
urls.py file in instances where the having an additional template is not necessary.

Template Requirements

• there must be one (and only one) element that wraps around the portion of the template that should be handled
by Unicorn

• the wrapping element must include unicorn:view as an attribute

• the template must included the unicorn_scripts and csrf_token template tags

Similar to a class-based view, Unicorn components have a as_view function which is used in urls.py.

Example

book.py
from django_unicorn.components import UnicornView

class BookView(UnicornView):
 title = ""

<!-- book.html -->
{% load unicorn %}

<html>
 <head>
 {% unicorn_scripts %}
 </head>
 <body>
 {% csrf_token %}
 <h1>Book</h1>

Direct View

20

 <div unicorn:view>
 <input unicorn:model="title" type="text" />

 {{ title }}
 </div>
 </body>
</html>

urls.py
from django.urls import path
from unicorn.components.book import BookView

urlpatterns = [
 path("book", BookView.as_view(), name="book"),
]

Validation
Unicorn has two options for validation. It can either use the standard Django forms infrastructure for re-usability or
ValidationError can be raised for simpler use-cases.

ValidationError
If you do not want to create a form class or you want to specifically target a nested field you can raise a
ValidationError inside of an action method. The ValidationError must be instantiated with a dict with the
model name as the key and error message as the value. A code keyword argument must also be passed in. The
typical error codes used are required or invalid.

book_validation_error.py
from django.utils.timezone import now
from django_unicorn.components import UnicornView

class BookView(UnicornView):
 book: Book

 def publish(self):
 if not self.book.title:
 raise ValidationError({"book.title": "Books must have a title"}, code="required")

 self.publish_date = now()
 self.book.save()

<!-- book-validation-error.html -->
<div>
 <input unicorn:model="book.title" type="text" id="title" />

 <button unicorn:click="publish">Publish Book</button>
</div>

Django Form
Unicorn can use the Django forms infrastructure for validation. This means that a form could be re-used between
any other Django views and a Unicorn component.

Note

There are many built-in fields available for Django form fields which can be used to validate text inputs.

Validation

21

https://docs.djangoproject.com/en/stable/ref/forms/fields/#built-in-field-classes

book_form.py
from django_unicorn.components import UnicornView
from django import forms

class BookForm(forms.Form):
 title = forms.CharField(max_length=100, required=True)
 publish_date = forms.DateField(required=True)

class BookView(UnicornView):
 form_class = BookForm

 title = ""
 publish_date = ""

<!-- book-form.html -->
<div>
 <input unicorn:model="title" type="text" id="title" />

 <input unicorn:model="publish_date" type="text" id="publish-date" />

 <button unicorn:click="$validate">Validate</button>
</div>

Because of the form_class = BookForm defined on the UnicornView above, Unicorn will automatically
validate that the title has a value and is less than 100 characters. The publish_date will also be converted into a
datetime from the string representation in the text input.

Validate the entire component

The magic action method $validate can be used to validate the whole component using the specified form.

<!-- validate.html -->
<div>
 <input unicorn:model="publish_date" type="text" id="publish-date" />

 <button unicorn:click="$validate">Validate</button>
</div>

The validate method can also be used inside of the component.

validate.py
from django_unicorn.components import UnicornView
from django import forms

class BookForm(forms.Form):
 title = forms.CharField(max_length=6, required=True)

class BookView(UnicornView):
 form_class = BookForm

 text = "hello"

 def set_text(self):
 self.text = "hello world"
 self.validate()

The is_valid method can also be used inside of the component to check if a component is valid.

validate.py
from django_unicorn.components import UnicornView
from django import forms

class BookForm(forms.Form):
 title = forms.CharField(max_length=6, required=True)

Validation

22

class BookView(UnicornView):
 form_class = BookForm

 text = "hello"

 def set_text(self):
 if self.is_valid():
 self.text = "hello world"

Showing validation errors
There are a few ways to show the validation messages.

Highlighting the invalid form

When a model form is invalid, a special unicorn:error attribute is added to the element. Depending on whether it
is an invalid or required error code, the attribute will be unicorn:error:invalid or
unicorn:error:required. The value of the attribute will be the validation message.

<!-- highlight-input-errors.html -->
<div>
 <style>
 [unicorn\:error\:invalid] {
 border: 1px solid red !important;
 }
 [unicorn\:error\:required] {
 border: 1px solid red !important;
 }
 </style>

<input
 unicorn:model="publish_date"
 type="text"
 id="publish-date"
 unicorn:error:invalid="Enter a valid date/time."
/>

</div>

Showing a specific error message

<!-- show-error-message.html -->
<div>
 <input unicorn:model="publish_date" type="text" id="publish-date" />

 {{ unicorn.errors.publish_date.0.message }}
</div>

Showing all the error messages

There is a unicorn_errors template tag that shows all errors for the component. It provides an example of how to
display component errors in a more specific way if needed.

<!-- show-all-error-messages.html -->
{% load unicorn %}

<div>
 {% unicorn_errors %}

 <input unicorn:model="publish_date" type="text" id="publish-date" />

</div>

Validation

23

Redirecting
Unicorn has a few different ways to redirect from an action method.

Redirect
To redirect the user, return a HttpResponseRedirect from an action method. Using the Django shortcut
redirect method is one way to do that in a typical Django manner.

Note

django.shortcuts.redirect can take a Django model, Django view name, an absolute url, or a relative url.
However, the permanent kwarg for redirect has no bearing in this context.

Tip

It is not required to use django.shortcuts.redirect. Anything that returns a HttpResponseRedirect will
behave the same in Unicorn.

redirect.py
from django.shortcuts import redirect
from django_unicorn.components import UnicornView
from .models import Book

class BookView(UnicornView):
 title = ""

 def save_book(self):
 book = Book(title=self.title)
 book.save()
 self.reset()

 return redirect(f"/book/{book.id}")

<!-- redirect.html -->
<div>
 <input unicorn:model="title" type="text" id="title" />

 <button unicorn:click="save_book()">Save book</button>
</div>

HashUpdate
To avoid a server-side page refresh and just update the hash at the end of the url, return HashUpdate from the
action method.

hash_update.py
from django_unicorn.components import HashUpdate, UnicornView
from .models import Book

class BookView(UnicornView):
 title = ""

 def save_book(self):
 book = Book(title=self.title)
 book.save()
 self.reset()

Redirecting

24

https://docs.djangoproject.com/en/stable/topics/http/shortcuts/#redirect

 return HashUpdate(f"#{book.id}")

<!-- hash-update.html -->
<div>
 <input unicorn:model="title" type="text" id="title" />

 <button unicorn:click="save_book()">Save book</button>
</div>

LocationUpdate
To avoid a server-side page refresh and update the whole url, return a LocationUpdate from the action method.

LocationUpdate is instantiated with a HttpResponseRedirect arg and an optional title kwarg.

Note

LocationUpdate uses window.history.pushState so the new url must be relative or the same origin as
the original url.

location_update.py
from django.shortcuts import redirect
from django_unicorn.components import LocationUpdate, UnicornView
from .models import Book

class BookView(UnicornView):
 title = ""

 def save_book(self):
 book = Book(title=self.title)
 book.save()
 self.reset()

 return LocationUpdate(redirect(f"/book/{book.id}"), title=f"{book.title}")

<!-- location-update.html -->
<div>
 <input unicorn:model="title" type="text" id="title" />

 <button unicorn:click="save_book()">Save book</button>
</div>

Loading States
Unicorn requires an AJAX request for any component updates, so it is helpful to provide some context to the user
that an action is happening.

Toggling Elements
Elements with the unicorn:loading attribute are only visible when an action is in process.

<!-- loading.html -->
<div>
 <button unicorn:click="update">Update</button>

 <div unicorn:loading>Updating!</div>
</div>

Loading States

25

https://developer.mozilla.org/en-US/docs/Web/API/History/pushState

When the Update button is clicked, the “Updating!” message will show until the action is complete, and then it will
re-hide itself.

Warning

Loading elements get shown or removed with the hidden attribute. One drawback to this approach is that setting
the style display property overrides this functionality.

You can also hide an element while an action is processed by adding a remove modifier.

<!-- loading-remove.html -->
<div>
 <button unicorn:click="update">Update</button>

 <div unicorn:loading.remove>Not currently updating!</div>
</div>

If there are multiple actions that happen in the component, you can show or hide a loading element for a specific
action by targeting another element’s id with unicorn:target.

<!-- loading-target-id.html -->
<div>
 <button unicorn:click="update" id="updateId">Update</button>
 <button unicorn:click="delete" id="deleteId">Delete</button>

 <div unicorn:loading unicorn:target="updateId">Updating!</div>
 <div unicorn:loading unicorn:target="deleteId">Deleting!</div>
</div>

An element’s unicorn:key can also be targeted.

<!-- loading-target-key.html -->
<div>
 <button unicorn:click="update" unicorn:key="updateKey">Update</button>
 <button unicorn:click="delete" unicorn:key="deleteKey">Delete</button>

 <div unicorn:loading unicorn:target="updateKey">Updating!</div>
 <div unicorn:loading unicorn:target="deleteKey">Deleting!</div>
</div>

Note

An asterisk can be used as wildcard to target more than one element at a time.

<!-- loading-target-wildcard-id.html -->
<div>
 <button unicorn:click="update" id="update1Id">Update 1</button>
 <button unicorn:click="update" id="update2Id">Update 2</button>

 <div unicorn:loading unicorn:target="update*Id">Updating!</div>
</div>

Toggling Attributes
Elements with an action event can also include an unicorn:loading attribute with either an attr or class
modifier.

Loading States

26

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/hidden

attr

Set the specified attribute on the element that is triggering the action.

This example will disable the Update button when it is clicked and remove the attribute once the action is completed.

<!-- loading-attr.html -->
<div>
 <button unicorn:click="update" unicorn:loading.attr="disabled">Update</button>
</div>

class

Add the specified class(es) to the element that is triggering the action.

This example will add loading and spinner classes to the Update button when it is clicked and remove the
classes once the action is completed.

<!-- loading-class.html -->
<div>
 <button unicorn:click="update" unicorn:loading.class="loading spinner">Update</button>
</div>

class.remove

Remove the specified class from the element that is triggering the action.

This example will remove a active class from the Update button when it is clicked and add the class back once the
action is completed.

<!-- loading-class-remove.html -->
<div>
 <button unicorn:click="update" unicorn:loading.class.remove="active">
 Update
 </button>
</div>

Dirty States
Unicorn can provide context to the user that some data has been changed and will be updated.

Toggling Attributes
Elements can include an unicorn:dirty attribute with either an attr or class modifier.

attr

Set the specified attribute on the element that is changed.

This example will set the input to be readonly when the model is changed. The attribute will be removed once the
name is synced or if the input value is changed back to the original value.

<!-- dirty-attr.html -->
<div>
 <input unicorn:model="name" unicorn:dirty.attr="readonly" />
</div>

class

Add the specified class(es) to the model that is changed.

This example will add dirty and changing classes to the input when the model is changed. The classes will be
removed once the model is synced or if the input value is changed back to the original value.

Dirty States

27

<!-- dirty-class.html -->
<div>
 <input unicorn:model="name" unicorn:dirty.class="dirty changing" />
</div>

class.remove

Remove the specified class(es) from the model that is changed.

This example will remove the clean class from the input when the model is changed. The class will be added back
once the model is synced or if the input value is changed back to the original value.

<!-- dirty-class-remove.html -->
<div>
 <input unicorn:model="name" unicorn:dirty.class.remove="clean" />
</div>

Partial Updates
Normally Unicorn will send the entire component’s rendered HTML on every action to make sure that any changes
to the context is reflected on the page. However, to reduce latency and minimize the amount of data that has to be
sent over the network, Unicorn can only update a portion of the page by utilizing the unicorn:partial attribute.

Note

By default, unicorn:partial will look in the current component’s template for an id or unicorn:key. If an
element can’t be found with the specified target, the entire component will be morphed like usual.

partial_update.py
from django_unicorn.components import UnicornView

class PartialUpdateView(UnicornView):
 checked = False

<!-- partial-update.html -->
<div>
 {{ checked }}
 <button unicorn:click="$toggle('checked')" unicorn:partial="checked-id">
 Toggle checked
 </button>
</div>

Target by id
To only target an element id add the id modifier to unicorn:partial.

<!-- partial-update-id.html -->
<div>
 {{ checked }}
 <button unicorn:click="$toggle('checked')" unicorn:partial.id="checked-id">
 Toggle checked
 </button>
</div>

Target by key
To only target an element unicorn:key add the key modifier to unicorn:partial.

Partial Updates

28

<!-- partial-update-key.html -->
<div>
 {{ checked }}
 <button unicorn:click="$toggle('checked')" unicorn:partial.key="checked-key">
 Toggle checked
 </button>
</div>

Note

Multiple partials can be targetted by adding multiple attributes to the element.

<button unicorn:click="$toggle('checked')" unicorn:partial.key="checked-key" unicorn:partial.id="checked-id">

Polling
unicorn:poll can be added to the root div element of a component to have it refresh the component
automatically every 2 seconds. The polling is smart enough that it won’t poll when the page is inactive.

polling.py
from django.utils.timezone import now
from django_unicorn.components import UnicornView

class PollingView(UnicornView):
 current_time = now()

<!-- polling.html -->
<div unicorn:poll>{{ current_time }}</div>

A method can also be specified if there is a specific method on the component that should called every time the
polling fires. For example, unicorn:poll="get_updates" would call the get_updates method instead of the
built-in refresh method.

To define a different refresh time in milliseconds, a modifier can be added as well. unicorn:poll-1000 would fire
the refresh method every 1 second, instead of the default 2 seconds.

<!-- polling-every-five-seconds.html -->
<div unicorn:poll-5000="get_updates">
 <input unicorn:model="update" type="text" id="text" />
 {{ update }}
</div>

Disable poll
Polling can dynamically be disabled by checking a boolean field from the component.

poll_disable.py
from django.utils.timezone import now
from django_unicorn.components import UnicornView

class PollDisableView(UnicornView):
 polling_disabled = False
 current_time = now()

 def get_date(self):
 self.current_time = now()

Polling

29

<!-- poll-disable.html -->
<div unicorn:poll-1000="get_date" unicorn:poll.disable="polling_disabled">
 current_time: {{ current_time|date:"s" }}

 <button u:click="$toggle('polling_disabled')">Toggle Polling</button>
</div>

Note

The field passed into unicorn:poll.disable can be negated with an exclamation point.

poll_disable_negation.py
from django.utils.timezone import now
from django_unicorn.components import UnicornView

class PollDisableNegationView(UnicornView):
 polling_enabled = True
 current_time = now()

 def get_date(self):
 self.current_time = now()

<!-- poll-disable-negation.html -->
<div unicorn:poll-1000="get_date" unicorn:poll.disable="!polling_enabled">
 current_time: {{ current_time|date:"s" }}

 <button u:click="$toggle('polling_enabled')">Toggle Polling</button>
</div>

PollUpdate
A poll can be dynamically updated by returning a PollUpdate object from an action method. The timing and
method can be updated, or it can be disabled.

poll_update.py
from django.utils.timezone import now
from django_unicorn.components import PollUpdate, UnicornView

class PollingUpdateView(UnicornView):
 polling_disabled = False
 current_time = now()

 def get_date(self):
 self.current_time = now()
 return PollUpdate(timing=2000, disable=False, method="get_date")

<!-- poll-update.html -->
<div unicorn:poll-1000="get_date">
 current_time: {{ current_time|date:"s" }}

</div>

Visibility
unicorn:visible can be added to any element to have it call the specified view method when it scrolls into view.

visibility.py
from django_unicorn.components import UnicornView

class VisibilityView(UnicornView):

Visibility

30

 visibility_count = 0

 def add_count(self):
 self.visibility_count += 1

<!-- visibility.html -->
<div>
 <div style="height: 100%">

 </div>
</div>

Note

In some cases, the element with the unicorn:visible attribute will always be in the viewport, so the event will
continue to fire and the method will continue to execute. However, this will not happen in the following instances:

• the fields of component do not change, so the AJAX request will return a 304 status code

• the method explicitly returns False

Modifiers
There are a few modifiers for unicorn:visible and they are able to be chained if necessary.

Debounce

Similar to the debounce modifier on a model or actions, wait the specified number of milliseconds before calling the
specified method.

<!-- debounce-modifier.html -->
<div>
 <div style="height: 100%">

 </div>
</div>

Threshold

The percentage (as an integer) that should be visible before being triggered. For example, 0 means that as soon as
1 pixel of the element is visible it would be fired, 25 would be 25% of the target element is visible, 100 would require
100% of the element to be completely visible.

<!-- threshold-modifier.html -->
<div>
 <div style="height: 100%">

 </div>
</div>

Messages
Unicorn supports Django messages and they work the same as if the template was rendered server-side. When
the update action is fired, a success message will be added to the request and will show up inside the component.

<!-- messages.html -->
<div>
 {% if messages %}

Messages

31

 <ul class="messages">
 {% for message in messages %}
 <li{% if message.tags %} class="{{ message.tags }}"{% endif %}>{{ message }}
 {% endfor %}

 {% endif %}

 <button unicorn:click="update">Update</button>

</div>

messages.py
from django.contrib import messages
from django_unicorn.components import UnicornView

class MessagesView(UnicornView):
 def update(self):
 messages.success(self.request, "update called")

Redirecting
When the action returns a redirect, Unicorn will defer the messages so they do not get rendered in the
component (since the user will never see the re-rendered component). Once the redirect has happened messages
will be available for rendering by the template as expected.

<!-- messages-when-redirecting.html -->
<div>
 <button unicorn:click="update">Update</button>
</div>

<!-- new-url.html -->

{% if messages %}

<ul class="messages">
 {% for message in messages %}
 <li{% if message.tags %} class="{{ message.tags }}"{% endif %}>{{ message }}
 {% endfor %}

{% endif %}

messages_when_redirecting.py
from django.contrib import messages
from django.shortcuts import redirect
from django_unicorn.components import UnicornView

class MessagesWhenRedirectingView(UnicornView):
 def update(self):
 messages.success(self.request, "update called")

 return redirect("new-url")

Messages

32

Advanced Views

Class properties

template_name

By default, the component name is used to determine what template should be used. For example,
hello_world.HelloWorldView would by default use unicorn/hello-world.html. However, you can specify
a particular template by setting template_name in the component.

hello_world.py
from django_unicorn.components import UnicornView

class HelloWorldView(UnicornView):
 template_name = "unicorn/hello-world.html"

Instance properties

component_args

The arguments passed into the component.

<!-- index.html -->
{% unicorn 'hello-arg' 'World' %}

hello_arg.py
from django_unicorn.components import UnicornView

class HelloArgView(UnicornView):
 def mount(self):
 assert self.component_args[0] == "World"

component_kwargs

The keyword arguments passed into the component.

<!-- index.html -->
{% unicorn 'hello-kwarg' hello='World' %}

hello_kwarg.py
from django_unicorn.components import UnicornView

class HelloKwargView(UnicornView):
 def mount(self):
 assert self.component_kwargs["hello"] == "World"

request

The current request.

hello_world.py
from django_unicorn.components import UnicornView

class HelloWorldView(UnicornView):
 def mount(self):
 print("Initial request that rendered the component", self.request)

 def test(self):
 print("AJAX request that re-renders the component", self.request)

Advanced Views

33

Custom methods
Defined component instance methods with no arguments are made available to the Django template context and can
be called like a property.

states.py
from django_unicorn.components import UnicornView

class StateView(UnicornView):
 def all_states(self):
 return ["Alabama", "Alaska", "Arizona", ...]

<!-- states.html -->
<div>

 {% for state in all_states %}
 {{ state }}
 {% endfor %}

</div>
{% endverbatim %}

Tip

If the method is intensive and will be called multiple times, it can be cached with Django’s cached_property
to prevent duplicate API requests or database queries. The method will only be executed once per component rendering.

states.py
from django.utils.functional import cached_property
from django_unicorn.components import UnicornView

class StateView(UnicornView):
 @cached_property
 def all_states(self):
 return ["Alabama", "Alaska", "Arizona", ...]

Instance methods

mount()

Gets called when the component gets initialized or reset.

hello_world.py
from django_unicorn.components import UnicornView

class HelloWorldView(UnicornView):
 name = "original"

 def mount(self):
 self.name = "mounted"

hydrate()

Gets called when the component data gets set.

hello_world.py
from django_unicorn.components import UnicornView

Advanced Views

34

class HelloWorldView(UnicornView):
 name = "original"

 def hydrate(self):
 self.name = "hydrated"

updating(name, value)

Gets called before each property that will get set.

updated(name, value)

Gets called after each property gets set.

updating_{property_name}(value)

Gets called before the specified property gets set.

updated_{property_name}(value)

Gets called after the specified property gets set.

calling(name, args)

Gets called before each method that gets called.

called(name, args)

Gets called after each method gets called.

complete()

Gets called after all methods have been called.

rendered(html)

Gets called after the component has been rendered.

parent_rendered(html)

Gets called after the component’s parent has been rendered (if applicable).

Meta
Classes that derive from UnicornView can include a Meta class that provides some advanced options for the
component.

exclude

By default, all public attributes of the component are included in the context of the Django template and available to
JavaScript. One way to protect internal-only data is to prefix the atteibute name with _ to indicate it should stay
private.

hello_state.py
from django_unicorn.components import UnicornView

class HelloStateView(UnicornView):
 _all_states = (
 "Alabama",

Advanced Views

35

 "Alaska",
 ...
 "Wisconsin",
 "Wyoming",
)

Another way to prevent that data from being available to the component template is to add it to the Meta class’s
exclude tuple.

hello_state.py
from django_unicorn.components import UnicornView

class HelloStateView(UnicornView):
 all_states = (
 "Alabama",
 "Alaska",
 ...
 "Wisconsin",
 "Wyoming",
)

 class Meta:
 exclude = ("all_states",)

javascript_exclude

To allow an attribute to be included in the the context to be used by a Django template, but not exposed to
JavaScript, add it to the Meta class’s javascript_exclude tuple.

<!-- hello-state.html -->
<div>
 {% for state in all_states %}
 <div>{{ state }}</div>
 {% endfor %}
</div>

hello_state.py
from django_unicorn.components import UnicornView

class HelloStateView(UnicornView):
 all_states = (
 "Alabama",
 "Alaska",
 ...
 "Wisconsin",
 "Wyoming",
)

 class Meta:
 javascript_exclude = ("all_states",)

safe

By default, unicorn HTML encodes updated field values to prevent XSS attacks. You need to explicitly opt-in to
allow a field to be returned without being encoded by adding it to the Meta class’s safe tuple.

<!-- safe-example.html -->
<div>
 <input unicorn:model="something_safe" />
 {{ something_safe }}
</div>

Advanced Views

36

safe_example.py
from django_unicorn.components import UnicornView

class SafeExampleView(UnicornView):
 something_safe = ""

 class Meta:
 safe = ("something_safe",)

Note

A context variable can be marked as safe in the template with the normal Django template filter, as well.

<!-- safe-example.html -->
<div>
 <input unicorn:model="something_safe" />
 {{ something_safe|safe }}
</div>

JavaScript Integration

Call JavaScript from View

To integrate with other JavaScript functions, view methods can call an arbitrary JavaScript function after it gets
rendered.

<!-- call-javascript.html -->
<div>
 <script>
 function hello(name) {
 alert("Hello, " + name);
 }
 </script>

 <input type="text" unicorn:model="name" />
 <button type="submit" unicorn:click="hello">Hello!</button>
</div>

call_javascript.py
from django_unicorn.components import UnicornView

class CallJavascriptView(UnicornView):
 name = ""

 def mount(self):
 self.call("hello", "world")

 def hello(self):
 self.call("hello", self.name)

Trigger Model Update

Normally when a model element gets changed by a user it will trigger an event which Unicorn listens for (either
input or blur depending on if it has a lazy modifier). However, when setting an element with JavaScript those
events do not fire. Unicorn.trigger() provides a way to trigger that event from JavaScript manually.

Advanced Views

37

The first argument to trigger is the component name. The second argument is the value for the element’s
unicorn:key.

<!-- trigger-model.html -->
<input
 id="nameId"
 unicorn:key="nameKey"
 unicorn:model="name"
 value="initial value"
/>

<script>
 document.getElementById("nameId").value = "new value";
 Unicorn.trigger("hello_world", "nameKey");
</script>

Queue Requests
This is an experimental feature of that queues up slow-processing component views to prevent race conditions. For
simple components this should not be necessary.

Serialization is turned off by default, but can be enabled in the settings.

Warning

This feature will be disabled automatically if the cache backend is set to
“django.core.cache.backends.dummy.DummyCache”.

Local memory caching (the default if no CACHES setting is provided) will work fine if the web server only has one
process. For more production use cases, consider using redis, Memcache, or database caching.

CLI
Unicorn provides a Django management command to create new components. The first argument is the name of
the Django app to create components in. Every argument after is the name of components that should be created.

python manage.py startunicorn unicorn hello-world

This example would create a unicorn directory, and templates and components sub-directories if necessary.
Underneath the components directory there will be a new module and subclass of
django_unicorn.components.UnicornView. Underneath the templates/unicorn directory will be a
example template.

The following is an example folder structure.

unicorn/
 components/
 __init__.py
 hello_world.py
 templates/
 unicorn/
 hello-world.html

Note

If you have an existing Django app, you can use that instead of unicorn like the example above. The
management command will create the the directories and files as needed.

Queue Requests

38

https://docs.djangoproject.com/en/stable/topics/cache/#dummy-caching-for-development
https://docs.djangoproject.com/en/3.1/topics/cache/#local-memory-caching
https://github.com/jazzband/django-redis
https://docs.djangoproject.com/en/stable/topics/cache/#memcached
https://docs.djangoproject.com/en/stable/topics/cache/#database-caching

Sub-folders
startunicorn supports creating components in sub-folders. Separate each folder by a dot (similar to Python
modules) to create a nested structure.

python manage.py startunicorn unicorn hello.world

unicorn/
 components/
 __init__.py
 hello/
 __init__.py
 world.py
 templates/
 unicorn/
 hello/
 world.html

The nested component would be included in a template like:

{% unicorn 'hello.world' %}

Settings
Unicorn stores all settings in a dictionary under the UNICORN attribute in the Django settings file. All settings are
optional.

settings.py
UNICORN = {
 "APPS": ["unicorn",],
 "CACHE_ALIAS": "default",
 "MINIFY_HTML": False,
 "MINIFIED": True,
 "RELOAD_SCRIPT_ELEMENTS": False,
 "SERIAL": {
 "ENABLED": False,
 "TIMEOUT": 60,
 },
 "SCRIPT_LOCATION": "after",
}

APPS
Specify the modules to look for components. Defaults to ["unicorn",].

CACHE_ALIAS
The alias to use for caching. Only used by the experimental serialization of requests for now. Defaults to
"default".

MINIFY_HTML
Minify the HTML generated by Unicorn in the AJAX request. If set to True and htmlmin is installed HTML will be
minified. htmlmin can be installed with Unicorn via poetry add django-unicorn[minify] or
pip install django-unicorn[minify]. Defaults to False.

MINIFIED
Provides a way to control if the minified version of the JavaScript bundle (i.e. unicorn.min.js) is used. Defaults to
!DEBUG.

Settings

39

https://pypi.org/project/htmlmin/

RELOAD_SCRIPT_ELEMENTS
Whether or not script elements in a template should be “re-run” after a template has been re-rendered.

SERIAL
Settings for the experimental serialization of requests. Defaults to {}.

ENABLED

Whether slow requests to the same component should be queued or not. Defaults to False.

TIMEOUT

The number of seconds to wait for a request to finish for additional requests to queue behind it. Defaults to 60.

SCRIPT_LOCATION
Where the initial JavaScript data is included on initial render. Two values are currently supported: after and
append.

after is the default and will render the JavaScript outside of the HTML component, i.e. it will be output in the same
hierarchy as the parent of the HTML component.

append will render the JavaScript inside of the HTML component.

FAQ

Do I need to learn a new frontend framework for Unicorn?
Nope! Unicorn gives you some magical template tags and HTML attributes to sprinkle in normal Django HTML
templates. The backend code is a simple class that ultimately derives from TemplateView. Keep using the same
Django HTML templates, template tags, filters, etc and the best-in-class Django ORM without learning another new
framework of the week.

Do I need to build an entire API to use Unicorn?
Nope! Django REST framework is pretty magical on its own, and if you will need a mobile app or other use for a
REST API, it’s a great set of abstractions to follow REST best practices. But, it can be challenging implementing a
robust API even with Django REST framework. And I wouldn’t even attempt to build an API up from scratch
unless it was extremely limited.

Do I need to install GraphQL to use Unicorn?
Nope! GraphQL is an awesome piece of technology for specific use-cases and solves some pain points around
creating a RESTful API, but it is another thing to wrestle with.

Do I need to run an annoying separate node.js process or learn any tedious
Webpack configuration incantations to use Unicorn?
Nope! Unicorn installs just like any normal Django package and is seamless to implement. There are a
few “magic” attributes to sprinkle into a Django HTML template, but other than that it’s just like building a regular
server-side application.

Does this replace Vue.js or React?
Nope! In some cases, you might need to actually build an SPA in which case Unicorn really isn’t that helpful. In that
case you might have to invest the time to learn a more involved frontend framework. Read Using VueJS alongside
Django for one approach, or check out other articles about this.

FAQ

40

https://tkainrad.dev/posts/use-vuejs-with-django/
https://tkainrad.dev/posts/use-vuejs-with-django/
https://www.django-unicorn.com/articles

Isn’t calling an AJAX endpoint on every input slow?
Not really! Unicorn is ideal for when an AJAX call would already be required (such as hitting an API for typeahead
search or update data in a database). If that isn’t required, the lazy and debounce modifiers can also be used to
prevent an AJAX call on every change.

But, what about security?
Unicorn follows the best practices of Django and requires a CSRF token to be set on any page that has a
component. This ensures that no nefarious AJAX POSTs can be executed. Unicorn also creates a unique
component checksum with the Django secret key on every data change which also ensures that all updates are
valid.

What browsers does Unicorn support?
Unicorn mostly targets modern browsers, but any PRs to help support legacy browsers would be appreciated.

How to make sure that the new JavaScript is served when a new version of
Unicorn is released?
Unicorn works great using whitenoise to serve static assets with a filename based on a hash of the file.
CompressedManifestStaticFilesStorage works great for this purpose and is used by django-unicorn.com for this very
purpose. Example code can be found at https://github.com/adamghill/django-unicorn.com/.

What is the difference between Unicorn and lighter front-end frameworks
like htmx or alpine.js?
htmx and alpine.js are great libraries to provide interactivity to your HTML. Both of those libraries are generalized
front-end framework that you could use with any server-side framework (or just regular HTML). They are both
well-supported, battle-tested, and answers to how they work are probably Google-able (or on Stackoverflow).

Unicorn isn’t in the same league as either htmx or alpine.js. But, the benefit of Unicorn is that it is tightly
integrated with Django and it should “feel” like an extension of the core Django experience. For example:

• redirecting from an action uses the Django redirect shortcut

• validation uses Django forms

• Django Models are tightly integrated

• Django messages “just work” the way you would expect them to

• you won’t have to create extra URLs/views for AJAX calls to send back HTML because Unicorn handles all of
that for you

Changelog

0.54.0

• Coerce type annotated arguments in an action method to the specified type (#571).

• Fix: Dictionary fields would sometimes create checksum errors (#572).

0.53.0

• Support passing arguments into a component (#560).

• Fix the handling of None for select elements. (#563).

• Better handling of AuthenticationForm when used in Component.form_class (#552) by lassebomh.

Changelog

41

https://docs.djangoproject.com/en/stable/ref/csrf/#how-it-works
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECRET_KEY
https://whitenoise.evans.io/en/stable/
http://whitenoise.evans.io/en/stable/django.html#add-compression-and-caching-support
https://www.django-unicorn.com/
https://github.com/adamghill/django-unicorn.com/blob/cb79932/project/settings.py#L72
https://htmx.org/
https://github.com/alpinejs/alpine
https://stackoverflow.com/questions/tagged/alpine.js
https://github.com/adamghill/django-unicorn/pull/571
https://github.com/adamghill/django-unicorn/pull/572
https://github.com/adamghill/django-unicorn/pull/560
https://github.com/adamghill/django-unicorn/pull/563
https://github.com/adamghill/django-unicorn/pull/552
https://github.com/lassebomh

v0.52.0

• Use CSRF_COOKIE_NAME Django setting (#545) by frnidito.

• Asterisk wildcard support for targeting loading (#543) by regoawt.

v0.51.0

• Fix: remove use of ByteString (#534) by hauntsaninja.

• Fix: Update loading on elements other than the current action element
([#512]https://github.com/adamghill/django-unicorn/pull/512) by bazubii).

• Add new logo and doc changes (#518) by dancaron.

• Fix: Nested children caching issues (#511) by bazubii).

• Fix: Negating a variable for poll.disable would not work correctly in some instances.

v0.50.0

• Support more than 1 level of nested children (#476 by bazubii).

All changes since 0.49.2.

v0.49.2

• Fix: Calling methods with a model typehint would fail after being called multiple times (#476 by stat1c-void).

All changes since 0.49.1.

v0.49.1

• Fix: Missing pp import in Python 3.7.

All changes since 0.49.0.

v0.49.0

• Fix: Handle inherited (i.e. subclassed) models #459.

• Fix: Support abbreviated u:view (#464 by nerdoc).

• Add version and build date to minified JavaScript for easier debugging.

All changes since 0.48.0.

v0.48.0

• Reload JavaScript script elements when a template is re-rendered. Currently only enabled with the
RELOAD_SCRIPT_ELEMENTS setting.

All changes since 0.47.0.

v0.47.0

• Fix: Include stacktrace for AttributeError errors.

• Fix: Only call updated_ and updating_ component functions once.

All changes since 0.46.0.

Changelog

42

https://github.com/adamghill/django-unicorn/pull/545
https://github.com/frnidito
https://github.com/adamghill/django-unicorn/pull/543
https://github.com/regoawt
https://github.com/adamghill/django-unicorn/pull/534
https://github.com/hauntsaninja
https://github.com/adamghill/django-unicorn/pull/512
https://github.com/bazubii
https://github.com/adamghill/django-unicorn/pull/518
https://github.com/dancaron
https://github.com/adamghill/django-unicorn/pull/511
https://github.com/bazubii
https://github.com/adamghill/django-unicorn/pull/507
https://github.com/bazubii
https://github.com/adamghill/django-unicorn/compare/0.49.2...0.50.0
https://github.com/adamghill/django-unicorn/pull/476
https://github.com/stat1c-void
https://github.com/adamghill/django-unicorn/compare/0.49.1...0.49.2
https://github.com/adamghill/django-unicorn/compare/0.49.0...0.49.1
https://github.com/adamghill/django-unicorn/issues/459
https://github.com/adamghill/django-unicorn/pull/464
https://github.com/nerdoc
https://github.com/adamghill/django-unicorn/compare/0.48.0...0.49.0
https://github.com/adamghill/django-unicorn/compare/0.47.0...0.48.0
https://github.com/adamghill/django-unicorn/compare/0.46.0...0.47.0

v0.46.0

• Support for loading nested components from a route that uses a class-based view.

• Better support for children components.

All changes since 0.45.1.

v0.45.1

• Fix: Handle JavaScript error that sometimes happens with nested components. 237 by clangley

All changes since 0.45.0.

v0.45.0

• Add ability to render initial data JavaScript inside the rendered component with SCRIPT_LOCATION setting

All changes since 0.44.1.

v0.44.1

• Fix: Some types of type annotations on a component method would cause an error when it was called #392 by
nerdoc.

• Add component_id, component_name, component_key to the unicorn dictionary in the template context
#389 by nerdoc.

All changes since 0.44.0.

v0.44.0

• Add support for raising a ValidationError from component methods.

All changes since 0.43.1.

v0.43.1

• Fix: direct views were not caching the component correctly.

All changes since 0.43.0.

v0.43.0

• Defer displaying messages when an action method returns a redirect.

• Prevent morphing or other changes when redirecting.

All changes since 0.42.1.

v0.42.1

• Fix: dictionaries in a component would generate incorrect checksums and trigger a
Checksum does not match error

• Remove some serializations that was happening unnecessarily on every render.

• Add Python 3.10 and Django 4.0 to test matrix.

All changes since 0.42.0.

Changelog

43

https://github.com/adamghill/django-unicorn/compare/0.45.1...0.46.0
https://github.com/adamghill/django-unicorn/issues/237
https://github.com/clangley
https://github.com/adamghill/django-unicorn/compare/0.45.0...0.45.1
https://github.com/adamghill/django-unicorn/compare/0.44.1...0.45.0
https://github.com/adamghill/django-unicorn/issues/392
https://github.com/nerdoc
https://github.com/adamghill/django-unicorn/issues/389
https://github.com/nerdoc
https://github.com/adamghill/django-unicorn/compare/0.44.0...0.44.1
https://github.com/adamghill/django-unicorn/compare/0.43.1...0.44.0
https://github.com/adamghill/django-unicorn/compare/0.43.0...0.43.1
https://github.com/adamghill/django-unicorn/compare/0.42.1...0.43.0
https://github.com/adamghill/django-unicorn/compare/0.42.0...0.42.1

v0.42.0

• Remove all blank spaces from JSON responses.

• Optional support for minifying response HTML with htmlmin.

• Log warning message if the component HTML does not appear to be well-formed (i.e. an element does not
have an ending tag). #342 by liamlawless35

Breaking changes

• Bump supported Python to >=3.7.

All changes since 0.41.2.

v0.41.2

• Fix: Handle excluding a field’s attribute when the field is None.

All changes since 0.41.1.

v0.41.1

• Fix: Handle component classes with a bool class attribute and a form_class with a BooleanField.
Reported by zurtri

All changes since 0.41.0.

v0.41.0

• Support using a context variable for a component name. #314 by robwa

All changes since 0.40.0.

v0.40.0

• Add direct view so that components can be added directly to urls without being required to be included in a
regular Django template.

• Add capability for startunicorn to create components in sub-folders.
(#299)[https://github.com/adamghill/django-unicorn/issues/299]

All changes since 0.39.1.

v0.39.1

• Prefer prefetch_related to reduce database calls for many-to-many fields.

All changes since 0.39.0.

v0.39.0

• Explicit error messages when an invalid component field is excluded

• Better support for serializing many-to-many fields which have been prefetched to reduce the number of
database calls

• Support excluding many-to-many fields with javascript_exclude

All changes since 0.38.1.

Changelog

44

https://pypi.org/project/htmlmin/
https://github.com/adamghill/django-unicorn/issues/342
https://github.com/liamlawless35
https://github.com/adamghill/django-unicorn/compare/0.41.2...0.42.0
https://github.com/adamghill/django-unicorn/compare/0.41.1...0.41.2
https://github.com/zurtri
https://github.com/adamghill/django-unicorn/compare/0.41.0...0.41.1
https://github.com/adamghill/django-unicorn/pull/314
https://github.com/robwa
https://github.com/adamghill/django-unicorn/compare/0.40.0...0.41.0
https://github.com/adamghill/django-unicorn/issues/299
https://github.com/adamghill/django-unicorn/compare/0.39.1...0.40.0
https://github.com/adamghill/django-unicorn/compare/0.39.0...0.39.1
https://github.com/adamghill/django-unicorn/compare/0.38.1...0.39.0

v0.38.1

• Fix: Allow components to be pickled so they can be cached.

All changes since 0.38.0.

v0.38.0

• Include request context in component templates.

All changes since 0.37.2.

v0.37.2

• Fix: nested field attributes for javascript_exclude.

All changes since 0.37.1.

v0.37.1

• Support nested field attributes for javascript_exclude.

All changes since 0.37.0.

v0.37.0

• Revert loading and dirty elements when the server returns a 304 (not modified) or a 500 error.

All changes since 0.36.1.

v0.36.1

• More verbose error messages when components can’t be loaded (nerdoc).

• More complete handling to prevent XSS attacks.

All changes since 0.36.0.

v0.36.0

• Security fix: for CVE-2021-42053 to prevent XSS attacks (reported by Jeffallan).

** Breaking changes **

• responses will be HTML encoded going forward (to explicitly opt-in to previous behavior use safe)

All changes since 0.35.3.

v0.35.3

• Fix: Handle when there are multiple apps sub-directories 273 by apoorvaeternity.

All changes since 0.35.2.

v0.35.2

• Fix: Make sure visible:elements trigger as expected in more cases.

• Prevent the visible element from continuing to trigger if the visibility element method returns False.

All changes since 0.35.0.

Changelog

45

https://github.com/adamghill/django-unicorn/compare/0.38.0...0.38.1
https://github.com/adamghill/django-unicorn/compare/0.37.2...0.38.0
https://github.com/adamghill/django-unicorn/compare/0.37.1...0.37.2
https://github.com/adamghill/django-unicorn/compare/0.37.0...0.37.1
https://github.com/adamghill/django-unicorn/compare/0.36.1...0.37.0
https://github.com/nerdoc
https://github.com/adamghill/django-unicorn/compare/0.36.0...0.36.1
https://github.com/Jeffallan
https://github.com/adamghill/django-unicorn/compare/0.35.3...0.36.0
https://github.com/adamghill/django-unicorn/pull/273
https://github.com/apoorvaeternity
https://github.com/adamghill/django-unicorn/compare/0.35.2...0.35.3
https://github.com/adamghill/django-unicorn/compare/0.35.0...0.35.2

v0.35.0

• Trigger an input or blur event for a model element from JavaScript.

• Visibility event with unicorn:visible attribute.

Breaking changes

• db_model Python decorator, unicorn:db, unicorn:field, unicorn:pk template attributes are removed.

All changes since 0.34.0.

v0.34.0

• Initial prototype for component template lifecycle events.

• Fix: elements after a child component would not get initialized #262 by joshiggins.

• Fix: cache would fail in some instances 258.

All changes since 0.33.0.

v0.33.0

• Fix: Allow comments, blank lines, or text at the top of component templates before the root element.

All changes since 0.32.0.

v0.32.0

• Add debounce support to actions.

All changes since 0.31.0.

v0.31.0

• Move JavaScript static assets into unicorn sub-folder

• Determine correct path for installed app passed to startunicorn management command

• Call startapp management command if app is not already installed

All changes since 0.30.0.

v0.30.0

• Look in all INSTALLED_APPS for components instead of only in a unicorn app 210

• Support settings.APPS_DIR which is the default for django-cookiecutter instead of just
settings.BASE_DIR 214

** Breaking changes **

• Require an application name when running the startunicorn management command for where the
component should be created

All changes since 0.29.0.

v0.29.0

• Sanitize initial JSON to prevent XSS

All changes since 0.28.0.

Changelog

46

https://github.com/adamghill/django-unicorn/compare/0.34.0...0.35.0
https://github.com/adamghill/django-unicorn/pull/262
https://github.com/joshiggins
https://github.com/adamghill/django-unicorn/issues/258
https://github.com/adamghill/django-unicorn/compare/0.33.0...0.34.0
https://github.com/adamghill/django-unicorn/compare/0.32.0...0.33.0
https://github.com/adamghill/django-unicorn/compare/0.31.0...0.32.0
https://github.com/adamghill/django-unicorn/compare/0.30.0...0.31.0
https://github.com/adamghill/django-unicorn/issues/210
https://github.com/adamghill/django-unicorn/issues/214
https://github.com/adamghill/django-unicorn/compare/0.29.0...0.30.0
https://github.com/adamghill/django-unicorn/compare/0.28.0...0.29.0

v0.28.0

• Re-fire poll method when tab/window comes back into focus after losing visibility
(https://github.com/adamghill/django-unicorn/pull/202 by frbor)

All changes since 0.27.2.

v0.27.2

• Fix bug with relationship fields on a Django model

All changes since 0.27.1.

v0.27.1

• Fix some issues with many-to-many fields on a Django model

All changes since 0.27.0.

v0.27.0

• Many-to-many fields on a Django model are now supported

• Multiple partial targets

All changes since 0.26.0.

v0.26.0

• Completely redesigned and much improved support for Django models and QuerySets.

• Fix the startunicorn command and add some ascii art.

All changes since 0.25.0.

v0.25.0

• Support calling functions in JavaScript modules.

• Fix: use unicorn:db without a unicorn:model in the same element.

All changes since 0.24.0.

v0.24.0

• Support custom CSRF headers set with CSRF_HEADER_NAME setting.

All changes since 0.23.0.

v0.23.0

• Performance enhancement that returns a 304 HTTP status code when an action happens, but the content
doesn’t change.

• Add unicorn:ignore attribute to prevent an element from being morphed (useful when using Unicorn with
libraries like Select2 that change the DOM).

• Add support for passing arguments to Unicorn.call.

• Bug fix when attempting to cache component views that utilize the db_model decorator.

All changes since 0.22.0.

Changelog

47

https://github.com/adamghill/django-unicorn/pull/202
https://github.com/frbor
https://github.com/adamghill/django-unicorn/compare/0.27.2...0.28.0
https://github.com/adamghill/django-unicorn/compare/0.27.1...0.27.2
https://github.com/adamghill/django-unicorn/compare/0.27.0...0.27.1
https://github.com/adamghill/django-unicorn/compare/0.26.0...0.27.0
https://github.com/adamghill/django-unicorn/compare/0.25.0...0.26.0
https://github.com/adamghill/django-unicorn/compare/0.24.0...0.25.0
https://docs.djangoproject.com/en/stable/ref/settings.md#csrf-header-name
https://github.com/adamghill/django-unicorn/compare/0.23.0...0.24.0
https://www.django-unicorn/docs/templates/#ignore-elements
https://github.com/adamghill/django-unicorn/compare/0.22.0...0.23.0

v0.22.0

• Use Django cache for storing component state when available

• Add support for Django 2.2.x

All changes since 0.21.2.

v0.21.2

• Add backported dataclasses for Python 3.6. (@frbor)

All changes since 0.21.0.

v0.21.0

• Bug fix: Prevent disabled polls from firing at all.

• Support Decimal field type.

• Support dataclass field type.

• Use type hints to cast fields to primitive Python types if possible.

All changes since 0.20.0.

v0.20.0

• Add ability to exclude component view properties from JavaScript to reduce the amount of data initially
rendered to the page with javascript_exclude.

• Add complete, rendered, parent_rendered component hooks.

• Call JavaScript functions from a component view’s method.

All changes since 0.19.0.

v0.19.0

• Re-implemented how action method parsing is done to remove all edge cases when passing arguments to
component view methods. (@frbor).

• Add support for passing kwargs to component view methods.

All changes since 0.18.1.

v0.18.1

• Fix regression where component kwargs were getting lost (#140, #141)

• Fix <code>startunicorn</code> management command (#142)

All changes since 0.18.0.

v0.18.0

• Only send updated data back in the response to reduce network latency.

• Experimental support for queuing up requests to alleviate race conditions when functions take a long time to
process.

Changelog

48

https://github.com/adamghill/django-unicorn/compare/0.21.2...0.22.0
https://github.com/frbor
https://github.com/adamghill/django-unicorn/compare/0.21.0...0.21.2
https://github.com/adamghill/django-unicorn/compare/0.20.0...0.21.0
https://github.com/adamghill/django-unicorn/compare/0.19.0...0.20.0
https://github.com/frbor
https://github.com/adamghill/django-unicorn/compare/0.18.1...0.19.0
https://github.com/adamghill/django-unicorn/compare/0.18.0...0.18.1

• Bug fix: prevent race condition where an instantiated component class would be inadvertently re-used for
component views that are slow to render

• Bug fix: use the correct component name to call a component method from “outside” the component.

• Deprecated: DJANGO_UNICORN setting has been renamed to UNICORN.

All changes since 0.17.2.

v0.17.2

• Don’t send the parent context in the response for child components that specify a partial update.

• Add support for element models to specify a partial update.

• Add support for polls to specify a partial update.

• Handle date, time, timespan when passed as arguments from JavaScript.

• Render child component template’s JavaScript initialization with the parent’s as opposed to inserting a new
script tag after the child component is rendered.

• Bug fix: prevent an error when rendering a Django model with a date-related field, but a string value.

All changes since 0.17.1.

v0.17.1

• Remove stray print statement.

• Fix bug where child components would sometimes lose their action events.

All changes since 0.17.0.

v0.17.0

• Target DOM changes from an action to only a portion of the DOM with partial updates.

All changes since 0.16.1.

v0.16.1

• Remove debounce from action methods to reduce any perceived lag.

All changes since 0.16.0.

v0.16.0

• Dirty states for when there is a change that hasn’t been synced yet.

• Add support for setting multiple classes for loading states.

• Attempt to handle when the component gets out of sync with an invalid checksum error.

• Performance tweaks when there isn’t a change to a model or dbModel with lazy or defer modifiers.

All changes since 0.15.1.

v0.15.1

• Fix bug where a component name has a dash in its name

All changes since 0.15.1.

Changelog

49

https://github.com/adamghill/django-unicorn/compare/0.17.2...0.18.0
https://github.com/adamghill/django-unicorn/compare/0.17.1...0.17.2
https://github.com/adamghill/django-unicorn/compare/0.17.0...0.17.1
https://github.com/adamghill/django-unicorn/compare/0.16.1...0.17.0
https://github.com/adamghill/django-unicorn/compare/0.16.0...0.16.1
https://github.com/adamghill/django-unicorn/compare/0.15.1...0.16.0
https://github.com/adamghill/django-unicorn/compare/0.15.0...0.15.1

v0.15.0

• Add support for child components

• Add discard action modifier

• Add support for referring to components in a folder structure

• Remove restriction that component templates must start with a div

• Remove restriction that component root can’t also have unicorn:model or unicorn:action

All changes since 0.15.0.

v0.14.1

• Prevent the currently focused model element from updating after the AJAX request finishes (#100).

All changes since 0.14.0.

v0.14.0

• Disable poll with a component field

• Dynamically change polling options with PollUpdate

• Basic support for pydantic models

All changes since 0.13.0.

v0.13.0

• Component key to allow disambiguation of components of the same name

• $returnValue special argument

• Get the last action method’s return value

All changes since 0.12.0.

v0.12.0

• Redirect from action method in component

All changes since 0.11.2.

v0.11.2

• Fix encoding issue with default component template on Windows (#91)

• Fix circular import when creating the component (#92)

All changes since 0.11.0.

v0.11.0

• $toggle special method.

• Support nested properties when using the set shortcut.

• Fix action string arguments that would get spaces removed inadvertently.

Breaking changes

Changelog

50

https://github.com/adamghill/django-unicorn/compare/0.14.1...0.15.0
https://github.com/adamghill/django-unicorn/issues/100
https://github.com/adamghill/django-unicorn/compare/0.14.0...0.14.1
https://pydantic-docs.helpmanual.io
https://github.com/adamghill/django-unicorn/compare/0.13.0...0.14.0
https://github.com/adamghill/django-unicorn/compare/0.12.0...0.13.0
https://github.com/adamghill/django-unicorn/compare/0.11.2...0.12.0
https://github.com/adamghill/django-unicorn/issues/91
https://github.com/adamghill/django-unicorn/issues/92
https://github.com/adamghill/django-unicorn/compare/0.11.0...0.11.2

• All existing special methods now start with a $ to signify they are magical. Therefore, refresh is now
$refresh, reset is now $reset, and validate is now $validate.

All changes since 0.10.1.

v0.10.1

• Use LRU cache for constructed components to prevent ever-expanding memory.

• Loosen beautifulsoup4 version requirement.

• Fix bug to handle floats so that they don’t lose precision when serialized to JSON.

• Fix bug to handle related models (ForeignKeys, OneToOne, etc) fields in Django models.

All changes since 0.10.0.

v0.10.0

• Add support for passing kwargs into the component on the template

• Provide access to the current request in the component’s methods

All changes since 0.9.4.

v0.9.4

• Fix: Prevent Django CharField form field from stripping whitespaces when used for validation.

• Fix: Handle edge case that would generate a null exception.

• Fix: Only change loading state when an action method gets called, not on every event fire.

All changes since 0.9.1.

v0.9.3

• Handle child elements triggering an event which should be handled by a parent unicorn element.

All changes since 0.9.1.

v0.9.1

• Fix: certain actions weren’t triggering model values to get set correctly

All changes since 0.9.0.

v0.9.0

• Loading states for improved UX.

• $event special argument for actions.

• u unicorn attribute.

• APPS setting for determing where to look for components.

• Add support for parent elements for non-db models.

• Fix: Handle if Meta doesn’t exist for db models.

All changes since 0.8.0.

Changelog

51

https://github.com/adamghill/django-unicorn/compare/0.10.1...0.11.0
https://github.com/adamghill/django-unicorn/compare/0.10.0...0.10.1
https://github.com/adamghill/django-unicorn/compare/0.9.4...0.10.0
https://github.com/adamghill/django-unicorn/compare/0.9.1...0.9.3
https://github.com/adamghill/django-unicorn/compare/0.9.1...0.9.3
https://github.com/adamghill/django-unicorn/compare/0.9.0...0.9.1
https://github.com/adamghill/django-unicorn/compare/0.8.0...0.9.0

v0.8.0

• Add much more elaborate support for dealing with Django models.

All changes since 0.7.1.

v0.7.1

• Fix bug where multiple actions would trigger multiple payloads.

• Handle lazy models that are children of an action model better.

All changes since 0.7.0.

v0.7.0

• Parse action method arguments as basic Python objects

• Stop and prevent modifiers on actions

• Defer modifier on model

• Support for multiple actions on the same element

• Django setting for whether the JavaScript is minified

Breaking changes

• Remove unused unicorn_styles template tag

• Use dash for poll timing instead of dot

All changes since 0.6.5.

v0.6.5

• Attempt to get the CSRF token from the cookie first before looking at the CSRF token.

All changes since 0.6.4.

v0.6.4

• Fix bug where lazy models weren’t sending values before an action was called

• Add is_valid method to component to more easily check if a component has validation errors.

• Better error message if the CSRF token is not available.

All changes since 0.6.3.

v0.6.3

• Fix bug where model elements weren’t getting updated values when an action was being called during the
same component update.

• Fix bug where some action event listeners were duplicated.

All changes since 0.6.2.

v0.6.2

• More robust fix for de-duping multiple actions.

• Fix bug where conditionally added actions didn’t get an event listener.

Changelog

52

https://github.com/adamghill/django-unicorn/compare/0.7.1...0.8.0
https://github.com/adamghill/django-unicorn/compare/0.7.0...0.7.1
https://github.com/adamghill/django-unicorn/compare/0.6.5...0.7.0
https://github.com/adamghill/django-unicorn/compare/0.6.4...0.6.5
https://github.com/adamghill/django-unicorn/compare/0.6.3...0.6.4
https://github.com/adamghill/django-unicorn/compare/0.6.2...0.6.3

All changes since 0.6.1.

v0.6.1

• Fix model sync getting lost when there is an action (issue 39).

• Small fix for validations.

All changes since 0.6.0.

v0.6.0

• Realtime validation of a Unicorn model.

• Polling for component updates.

• More component hooks

All changes since 0.5.0.

v0.5.0

• Call component method from JavaScript.

• Support classes, dictionaries, Django Models, (read-only) Django QuerySets properties on a component.

• Debounce modifier to change how fast changes are sent to the backend from unicorn:model.

• Lazy modifier to listen for blur instead of input on unicorn:model.

• Better support for textarea HTML element.

All changes since 0.4.0.

v0.4.0

• Set shortcut for setting properties.

• Listen for any valid event, not just click.

• Better handling for model updates when element ids aren’t unique.

All changes since 0.3.0.

v0.3.0

• Add mount hook.

• Add reset action.

• Remove lag when typing fast in a text input and overall improved performance.

• Better error handling for exceptional cases.

All changes since 0.2.3.

v0.2.3

• Fix for creating default folders when running startunicorn.

All changes since 0.2.2.

v0.2.2

Changelog

53

https://github.com/adamghill/django-unicorn/compare/0.6.1...0.6.2
https://github.com/adamghill/django-unicorn/issues/39
https://github.com/adamghill/django-unicorn/compare/0.6.0...0.6.1
https://github.com/adamghill/django-unicorn/compare/0.5.0...0.6.0
https://github.com/adamghill/django-unicorn/compare/0.4.0...0.5.0
https://github.com/adamghill/django-unicorn/compare/0.3.0...0.4.0
https://github.com/adamghill/django-unicorn/compare/0.2.3...0.3.0
https://github.com/adamghill/django-unicorn/compare/0.2.2...0.2.3

• Set default template_name if it’s missing in component.

All changes since 0.2.1.

v0.2.1

• Fix startunicorn Django management command.

All changes since 0.2.0.

v0.2.0

• Switch from Component class to UnicornView to follow the conventions of class-based views.

• Investigate using class-based view instead of the custom Component class

All changes since 0.1.1.

v0.1.1

• Fix package readme and repository link.

All changes since 0.1.0.

v0.1.0

• Initial version with basic functionality.

Troubleshooting

Disallowed MIME type error on Windows
Apparently Windows system-wide MIME type configuration sometimes won’t load up JavaScript modules in certain
browsers. The errors would be something like Loading module from “http://127.0.0.1:8000/static/j
s/unicorn.js” was blocked because of a disallowed MIME type (“text/plain”) or Failed to
 load module script: The server responded with a non-JavaScript MIME type of "text/pl
ain".

One suggested solution is to add the following to the bottom of the settings file:

settings.py

if DEBUG:
 import mimetypes
 mimetypes.add_type("application/javascript", ".js", True)

See this Windows MIME type detection pitfalls article, this StackOverflow answer, or issue #201 for more details.

Architecture
Unicorn is made up of multiple pieces which are all integrated tightly together. The following is a summary of how
some of it all fits together, although it skips over a lot of the complexity and advanced functionality. However, for all of
the details the code is available at https://github.com/adamghill/django-unicorn/.

Troubleshooting

54

https://github.com/adamghill/django-unicorn/compare/0.2.1...0.2.2
https://github.com/adamghill/django-unicorn/compare/0.2.0...0.2.1
https://github.com/adamghill/django-unicorn/issues/4
https://github.com/adamghill/django-unicorn/compare/0.1.1...0.2.0
https://github.com/adamghill/django-unicorn/compare/0.1.0...0.1.1
https://www.taricorp.net/2020/windows-mime-pitfalls/
https://stackoverflow.com/a/16355034
https://github.com/adamghill/django-unicorn/issues/201
https://github.com/adamghill/django-unicorn/

Template tags
Starting with the integration with a normal Django template, there are the unicorn_scripts and unicorn
template tags. unicorn_scripts renders out the entire JavaScript library and initializes the global Unicorn
object. The unicorn template tag provides the ability to add the component wherever it is needed on the page.
Based on the name passed into the unicorn template tag, conventions are used to find the correct component view
and component template (e.g. if “hello-world” is passed into the template tag, a class of
hello_world.HelloWorldView and a template named hello-world.html will be searched for).

Once the component view and template are found, a serialized version of all of the public attributes of the component
view is generated into a JSON object for the page, and the template is rendered with a context of those same public
attributes.

JavaScript initialization
After the template is rendered, the JavaScript library parses the HTML for DOM elements that start with unicorn:
or u: and creates a list of attributes that end with :model, :poll, or other specific Unicorn functionality. For
attributes that are left, the assumption is that they are an event type (e.g. unicorn:click).

For anything that is a model, the JavaScript sets the value for the element based on the serialized data of the publicly
available attributes from the component view. Event listeners are attached for all event types. Then, other custom
functionality is setup (e.g. polling).

Models
For all inputs which have a model attribute, an event listener is attached (either change or blur depending on if the
lazy modifier is used). The defer modifier will store the action to be bundled with an action event that might
happen later.

Once a model event is fired it is sent over the wire to the defined AJAX endpoint with a specific JSON structure which
tells Unicorn what the updated data from the input should be. The component class is re-instantiated and the data
is updated from the front-end, then re-rendered and the HTML is returned in the response.

Actions
Actions follow a similar path as the models above, however there is a different JSON stucture. Also, the method,
arguments, and kwargs that are passed from the front-end get parsed with a mix of ast.parse and
ast.literal_eval to convert the strings into the appropriate Python types (i.e. change the string “1” to the integer
1). After the component is re-initialized, the method is called with the passed-in arguments and kwargs. Once all of
the actions have been called, the component view is re-rendered and the HTML is returned in the response.

HTML Diff
After the AJAX endpoint returns its response, the newly rendered DOM is merged into the old DOM with morphdom
and input values are set again based on the new data in the AJAX response.

Contributor Covenant Code of Conduct

Our Pledge
We as members, contributors, and leaders pledge to make participation in our community a harassment-free
experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics,
gender identity and expression, level of experience, education, socio-economic status, nationality, personal
appearance, race, caste, color, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy
community.

Contributor Covenant Code of Conduct

55

Our Standards
Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening,
offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for
moderation decisions when appropriate.

Scope
This Code of Conduct applies within all community spaces, and also applies when an individual is officially
representing the community in public spaces. Examples of representing our community include using an official
e-mail address, posting via an official social media account, or acting as an appointed representative at an online or
offline event.

Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders
responsible for enforcement at conduct@adamghill.com. All complaints will be reviewed and investigated promptly
and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Contributor Covenant Code of Conduct

56

mailto:conduct@adamghill.com

Consequence: A warning with consequences for continued behavior. No interaction with the people involved,
including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels like social media. Violating these
terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

Attribution
This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

Want to add some component-based magic to your front-end, but don’t need the overhead of a complete JavaScript
front-end framework? Unicorn revolutionizes the way your users interact with your Django app! With Unicorn, you
can create stunningly spiffy pages without ever leaving Python or your beloved Django codebase.

Unicorn is a reactive component framework that enhances your Django views by seamlessly making AJAX calls in
the background and dynamically updates the HTML DOM. It’s like magic, but better! Unicorn is leading the charge
in bringing a component-based developer experience to Django. Join the Unicorn community today and unlock the
power of reactivity!

Here are a few reasons to consider Unicorn.

Reactive Components: With Unicorn, you can create reactive components that dynamically update the
HTML DOM without the need for complex JavaScript. This makes it easier to build interactive web pages and
enhances the user experience.

Seamless Integration: Unicorn progressively enhances your Django views. This means you can seamlessly
integrate Unicorn into your existing Django codebase without disrupting your current workflow.

Component-Based Design: Unicorn brings the benefits of component-based design to the Python
ecosystem, making it easier to build complex applications and enabling more efficient development.

Improved Performance: By using AJAX calls to update the DOM, Unicorn reduces the need for full page
reloads, which can result in improved performance and faster load times.

Familiarity: With Unicorn, you don’t need to learn a complicated front-end frameworks to create fancy
interactive components. Instead, you can use the familiar Django syntax and templates to build your front-end
components.

Related projects
Unicorn stands on the shoulders of giants, in particular morphdom which is integral for merging DOM changes.

Related projects

57

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations
https://github.com/patrick-steele-idem/morphdom

Inspirational projects in other languages

• Livewire, a full-stack framework for the PHP web framework, Laravel.

• LiveView, a library for the Elixir web framework, Phoenix, that uses websockets.

• StimulusReflex, a library for the Ruby web framework, Ruby on Rails, that uses websockets.

• Hotwire, “is an alternative approach to building modern web applications without using much JavaScript by
sending HTML instead of JSON over the wire”. Uses AJAX, but can optionally use websockets.

Full-stack framework Python packages

• Reactor, a port of Elixir’s LiveView to Django. Especially interesting for more complicated use-cases like chat
rooms, keeping multiple browsers in sync, etc. Uses Django channels and websockets to work its magic.

• Flask-Meld, a port of Unicorn to Flask. Uses websockets.

• Sockpuppet, a port of Ruby on Rail’s StimulusReflex. Requires Django channels and websockets.

• Django inertia.js adapter allows Django to use inertia.js to build an SPA
without building an API.

• Hotwire for Django contains a few different repositiories to integrate Hotwire with Django.

• Lona is a web application framework, designed to write responsive web apps in full Python.

• ReactPy is a port of ReactJS to Python. Fully compatible with all ReactJS components.

• django-async-include load HTML via AJAX.

Django component packages

• django-components, which lets you create “template components”, that contains both the template, the
Javascript and the CSS needed to generate the front end code you need for a modern app.

• django-component, which provides declarative and composable components for Django, inspired by JavaScript
frameworks.

• django-page-components, a minimalistic framework for creating page components and using them in your
Django views and templates.

• slippers, helps build reusable components in Django without writing a single line of Python.

• django_slots allows multiline strings to be captured and passed to template tags.

Django packages to integrate lightweight frontend frameworks

• django-htmx which has extensions for using Django with htmx.

Related projects

58

https://laravel-livewire.com/
https://github.com/phoenixframework/phoenix_live_view
https://docs.stimulusreflex.com
https://hotwire.dev
https://github.com/edelvalle/reactor/
https://github.com/mikeabrahamsen/Flask-Meld
https://sockpuppet.argpar.se/
https://github.com/zodman/inertia-django
https://github.com/hotwire-django
https://hotwire.dev
https://lona-web.org/
https://reactpy.dev/
https://github.com/diegojromerolopez/django-async-include
https://github.com/EmilStenstrom/django-components/
https://gitlab.com/Mojeer/django_components
https://github.com/andreyfedoseev/django-page-components
https://mitchel.me/slippers/
https://github.com/nwjlyons/django_slots
https://github.com/adamchainz/django-htmx
https://htmx.org/

	Introduction
	Installation
	Install Unicorn
	Integrate Unicorn with Django

	Components
	Create a component
	Component key
	Component arguments
	Example component
	Component sub-folders
	Unicorn attributes
	Supported property types
	Property type hints
	Accessing nested fields
	Django QuerySet
	Custom class

	Templates
	Model modifiers
	Lazy
	Debounce
	Defer
	Chaining modifiers

	Key
	Smooth updates
	DOM merging

	Lifecycle events
	updated

	Ignore elements

	Actions
	Events
	Passing arguments
	Argument types
	Coerced types
	Django models
	Custom types
	Enums

	Set shortcut
	Modifiers
	prevent
	stop
	discard
	debounce

	Special arguments
	$event
	$returnValue

	Special methods
	$refresh
	$reset
	$toggle
	$validate

	Calling methods
	Return values

	Child components
	Parent component
	Child component
	Multiple children

	Django Models
	Model
	QuerySet

	Direct View
	Template Requirements
	Example

	Validation
	ValidationError
	Django Form
	Validate the entire component

	Showing validation errors
	Highlighting the invalid form
	Showing a specific error message
	Showing all the error messages

	Redirecting
	Redirect
	HashUpdate
	LocationUpdate

	Loading States
	Toggling Elements
	Toggling Attributes
	attr
	class
	class.remove

	Dirty States
	Toggling Attributes
	attr
	class
	class.remove

	Partial Updates
	Target by id
	Target by key

	Polling
	Disable poll
	PollUpdate

	Visibility
	Modifiers
	Debounce
	Threshold

	Messages
	Redirecting

	Advanced Views
	Class properties
	template_name

	Instance properties
	component_args
	component_kwargs
	request

	Custom methods
	Instance methods
	mount()
	hydrate()
	updating(name, value)
	updated(name, value)
	updating_{property_name}(value)
	updated_{property_name}(value)
	calling(name, args)
	called(name, args)
	complete()
	rendered(html)
	parent_rendered(html)

	Meta
	exclude
	javascript_exclude
	safe

	JavaScript Integration
	Call JavaScript from View
	Trigger Model Update

	Queue Requests
	CLI
	Sub-folders

	Settings
	APPS
	CACHE_ALIAS
	MINIFY_HTML
	MINIFIED
	RELOAD_SCRIPT_ELEMENTS
	SERIAL
	ENABLED
	TIMEOUT

	SCRIPT_LOCATION

	FAQ
	Do I need to learn a new frontend framework for Unicorn?
	Do I need to build an entire API to use Unicorn?
	Do I need to install GraphQL to use Unicorn?
	Do I need to run an annoying separate node.js process or learn any tedious Webpack configuration incantations to use Unicorn?
	Does this replace Vue.js or React?
	Isn’t calling an AJAX endpoint on every input slow?
	But, what about security?
	What browsers does Unicorn support?
	How to make sure that the new JavaScript is served when a new version of Unicorn is released?
	What is the difference between Unicorn and lighter front-end frameworks like htmx or alpine.js?

	Changelog
	0.54.0
	0.53.0
	v0.52.0
	v0.51.0
	v0.50.0
	v0.49.2
	v0.49.1
	v0.49.0
	v0.48.0
	v0.47.0
	v0.46.0
	v0.45.1
	v0.45.0
	v0.44.1
	v0.44.0
	v0.43.1
	v0.43.0
	v0.42.1
	v0.42.0
	v0.41.2
	v0.41.1
	v0.41.0
	v0.40.0
	v0.39.1
	v0.39.0
	v0.38.1
	v0.38.0
	v0.37.2
	v0.37.1
	v0.37.0
	v0.36.1
	v0.36.0
	v0.35.3
	v0.35.2
	v0.35.0
	v0.34.0
	v0.33.0
	v0.32.0
	v0.31.0
	v0.30.0
	v0.29.0
	v0.28.0
	v0.27.2
	v0.27.1
	v0.27.0
	v0.26.0
	v0.25.0
	v0.24.0
	v0.23.0
	v0.22.0
	v0.21.2
	v0.21.0
	v0.20.0
	v0.19.0
	v0.18.1
	v0.18.0
	v0.17.2
	v0.17.1
	v0.17.0
	v0.16.1
	v0.16.0
	v0.15.1
	v0.15.0
	v0.14.1
	v0.14.0
	v0.13.0
	v0.12.0
	v0.11.2
	v0.11.0
	v0.10.1
	v0.10.0
	v0.9.4
	v0.9.3
	v0.9.1
	v0.9.0
	v0.8.0
	v0.7.1
	v0.7.0
	v0.6.5
	v0.6.4
	v0.6.3
	v0.6.2
	v0.6.1
	v0.6.0
	v0.5.0
	v0.4.0
	v0.3.0
	v0.2.3
	v0.2.2
	v0.2.1
	v0.2.0
	v0.1.1
	v0.1.0

	Troubleshooting
	Disallowed MIME type error on Windows

	Architecture
	Template tags
	JavaScript initialization
	Models
	Actions
	HTML Diff

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	Related projects
	Inspirational projects in other languages
	Full-stack framework Python packages
	Django component packages
	Django packages to integrate lightweight frontend frameworks

